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Introduction

In this thesis we will take a detailed look inside a novel type of optical materials,
photonic crystal structures, using near-field optical techniques.

Although the concept of near-field optics was already proposed in 1928, experi-
ments only became possible after the invention of scanning probe microscopy in
the eighties. Bringing a sharp tapered probe, with a sub-wavelength aperture at
its nanometric apex, in close proximity to a sample allows imaging with an optical
resolution better than the diffraction limit. As a result, it becomes possible to
study the local properties of light inside optical structures. A good introduction
to the wide area of applications and into the different instrumental approaches
can be found in a J. Microscopy (e.g., [1], [2]) and in the book Nano-optics by
Kawata [3].

Photonic crystals are one-, two- or three-dimensional composites of periodi-
cally alternated dielectric materials. The periodicity has to be of the order of the
relevant wavelengths. The typical character of such a composite is that light of a
certain range of frequencies cannot propagate along certain directions inside the
crystal. The forbidden ranges are called stopgaps. In multi-dimensional crystals,
stopgaps along different crystalline directions can overlap. When an overlap ex-
ists in all possible crystalline directions for a certain range of optical frequencies,
this resulting forbidden range of frequencies is called the photonic bandgap. The
photonic bandgap strongly affect the optical properties of the crystal. Defects
introduced on purpose into a photonic crystal can result in a localised photon
state inside the stop- or bandgap. A point defect can thus act as a high-quality
resonator and a line defect can be used as an optical waveguide. The existence of
a photonic bandgap in three-dimensional crystals will eliminate quantum vacuum
fluctuations at the frequencies in the gap. A wide review of theoretical and ex-
perimental results can be found in the books of Joannopoulos [4], Sakoda [5] and
in a recent Nato Conference Proceedings [6].

The high potential of interesting quantum physics and the exciting possible ap-
plications of photonic crystals has motivated researchers to investigate a huge va-
riety of ideas. Some promising highlights of the field are investigations on trapped
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Introduction

photons in a two-dimensional photonic crystal [7], control over spontaneous emis-
sion of laser dyes located inside three-dimensional air-sphere crystals [8], highly
efficient LED’s [9] and white light generation in photonic fibres [10].

The subtle manipulation of optical interference effects is crucial in photonic
crystals. As a result small variations, intended or not, in the geometry result in
large effects on the light propagation. It is therefore desirable to investigate the
nanoscale local optical properties inside the structure and directly relate them to
the geometry. Conventional far-field methods, such as reflectivity and transmission
experiments only provide global averaged information. In contrast, a near-field
optical microscope has the potential to reveal local details on the relevant length
scale. The insights gained will help to understand the complex materials better
and to optimise the crystal design in the near future.

In this thesis we present different approaches to investigate photonic crystals.
Near-field optical microscopy as well as far-field reflectivity investigations reveal
interesting and novel details of photonic crystal structures. Local phase-sensitive
measurements are performed on one-dimensional structures. Losses of the struc-
ture are determined and networks of phase singularities are observed. For the
first time, the reversal of dispersive line shapes of resonance features, occurring
in the reflectivity spectra obtained on two-dimensional photonic crystal slabs, is
observed and analysed. Moreover, we present the first near-field investigations on
three-dimensional photonic crystals. The coupling of light coming from the fibre
probe to the crystal indicates effects related to intricate photonic stopgaps.

Outline of this Thesis

In chapter 1, a theoretical introduction on photonic crystals is given. The
dispersion relation, which describes the optical properties of a photonic crystal,
is discussed for the one-, two- and three-dimensional case. In the second part of
the chapter, we discuss the processes used for fabrication of the investigated one-,
two- and three-dimensional structures. The material details and the geometrical
dimensions of these structures are presented.

In chapter 2, the different far-field and near-field characterisation methods
that have been used are explained. First, technical details on the near-field probe
fabrication are discussed. Then, a photon scanning tunnelling microscope (PSTM),
which is a near-field scanning optical microscope (NSOM) in collection mode,
and a NSOM in illumination mode are elucidated. Both measurement setups are
equipped with a three-dimensional measurement mode. In the second part of the
chapter far-field reflectivity is briefly discussed. To understand the measurements
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Introduction

on resonant modes of a photonic crystal slab, we explain the technique of specular
reflectivity (angle-dependent reflectivity) measurements and the physical principle
of the interaction of light with the crystal structure.

Different one-dimensional photonic structures are investigated with a PSTM
and the results are presented in chapter 3. The technique allows not only probing
of the optical amplitude of light, but simultaneously detects the phase information
of light. We discuss the evolution of scattered light and phase singularities.

Chapter 4 deals with far-field investigations on two-dimensional photonic crys-
tal slabs. First, the stopgaps are determined with in-plane reflectivity measure-
ments. Then, angle-dependent reflectivity spectra are obtained to determine the
dispersion of resonant modes. We also investigate the line shapes of the resonance
features in detail.

In chapter 5, near-field investigations on three-dimensional photonic crystals
are presented. For different optical frequencies we investigate the coupling of light
from a near-field probe through a crystal. We present the effect of surface defects
on the light transfer. Moreover, approach curves obtained on the opals for different
optical frequencies indicate the presence of the first order Γ - L stopgap.
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Chapter 1

Photonic crystal structures

Photonic crystals should enable the possibility of designed guiding of light or inhibit-
ing the spontaneous emission of fluorescent molecules. Controlling the propagation
of light or manipulating the emission properties of a light emitter with photonic
crystal structures has many novel, high-potential applications, e.g., low threshold
lasers or miniaturised all optical circuits. In this chapter, we give a short introduc-
tion on the principle of photonic crystals. Afterwards, the specific photonic crystal
structures investigated in this thesis are discussed theoretically. In the second part
of this chapter, fabrication methods used to create the photonic crystal structures
are explained and details concerning the investigated crystals are provided.

11



Chapter 1. Photonic crystal structures

1.1 Theoretical aspects

Photonic crystals offer a huge potential for applications, since they enable the
control and manipulation of light. On purpose designed defects allow tailoring
the light propagation. In a one-dimensional structure, a defect state acts as a
bandpass filter [11]. For two- and three-dimensional crystals, point defects act
as high-quality resonators [12], whereas line defects guide light of the allowed
optical states through the crystal [13]. Especially this unique possibility to control
light has encouraged a large research activity that aims for a miniaturisation and
optimisation of integrated optics and telecommunication networks [14], [15].

Some selected examples to illustrate the exciting physics and important ap-
plications are, e.g., the superprism phenomena in planar photonic crystal [16],
which should enable wavelength-division multiplexing or white light generation in
photonic fibres that will provide new light sources [10]. Moreover, highly efficient
LED’s can be fabricated [9]. It is obvious that the photonic crystal are promising
new materials, which merit exploration in greater detail.

1.1.1 General introduction

When light interacts with materials of different refractive indices scattering and
diffraction occurs. If the variation of the refractive indices is periodic (in one-,
two- or three-dimensions) light reflected from a set of parallel planes can interfere
constructively, which is called Bragg-diffraction. A composite of different periodi-
cally arranged dielectrics is called a photonic crystal, if the periodicity is of the
order of the wavelength of light [6], [17], [18], [19].

n
2

n
1

n
2

n
1

n
2

n
1

a a a

Figure 1.1: Schematic illustrations of one-, two- and three-dimensional photonic crystals.
The crystals consist of two different dielectric materials with refractive indices n1 and n2.
The period a of the arrangements is proportional to half of the wavelength of interest,
thus on the sub-wavelength scale.
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1.1 Theoretical aspects

Figure 1.1 depicts schematically examples of one-, two- and three-dimensional
photonic crystals. The sketch on the left side shows a one-dimensional crystal
consisting of dielectric planes of two different refractive indices n1 and n2, which
are alternated with a period a. If a second periodic variation is introduced, as
shown in the sketch in the middle of Fig. 1.1, the crystal is two-dimensional. In
the representation on the right side, a three-dimensional crystal with periodicity in
all three dimensions is depicted. For such periodic composites of different materials
light of certain frequencies is forbidden to propagate along certain directions in the
crystal. In the following we illustrate the theoretical description of the presence of
such a stopgap for a one-dimensional example.

The optical properties of a photonic crystal are described by the dispersion
relation that expresses the optical frequency ω as a function of the wavevector k
of the propagating waves in the material. For a homogeneous dielectric material
(dielectric constant ε), the dispersion of light is a straight line given by

ω =
c√
ε
· k , (1.1)

where c is speed of light in vacuum. Note that in general the dielectric constant is
frequency dependent: ε= ε(ω). By introducing a periodic refractive index varia-
tion to the material, the dispersion relation is greatly affected. Figure 1.2 depicts
schematically both the dispersion of a homogeneous material and the dispersion
of a one-dimensional photonic crystal. On the vertical axis the dimensionless fre-
quency ω is given in units of [2πc

a ]. On the horizontal axis, the wavevector k is
given in units [2π

a ]. The dispersion of the one-dimensional photonic crystal shows
a curvature around the wavevector 0.5 (the edge of the Brillouin zone [20], [21]).
There, a gap of frequencies opens up, for which no corresponding real wavevector
can be found. Light of these frequencies cannot propagate in the crystal. The
corresponding wavevectors have only an imaginary part and thus decay exponen-
tially inside the crystal. These range of frequencies, which cannot propagate and
are forbidden, is called a stopgap. For multi-dimensional crystals, stopgaps can
exist along several directions. When stopgaps along all the various crystalline di-
rections overlap, a photonic bandgap is present, for which the optical frequencies
are forbidden in all directions.

The refractive index n =
√

ε of a material is given by the slope of the dashed
line in the dispersion relation (Eq. 1.1). For a photonic crystal, the refractive index
changes when approaching the Brillouin zone edge. An increase of the refractive
index is found at the low frequency side of the stopgap. There, the power of the
E-field is located mainly in the high index material. At the high frequency side
of the stopgap, a decrease in refractive index implies that the power of the E-
field is mainly present in the low index material. For a photonic crystal a good
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Figure 1.2: Schematic representation of a dispersion relation of a homogeneous dielectric
material with a refractive index n and of an infinitive one-dimensional photonic crystal
with an effective refractive index of n. The slope of the dashed line is 1 / n. For the
photonic crystal, the bands curve at the edge of the Brillouin zone and a stopgap, a gap of
forbidden frequencies, opens up. Frequencies lying in the stopgap have a purely imaginary
wavevector, the real part of the wavevector is zero. Thus, light of this frequencies is
evanescent and decays exponentially into the crystal.

approximation for the effective refractive index is

εeff = φ1 · ε1 + φ2 · ε2 , (1.2)

where φ1 is the volume fraction of the high index material of a dielectric constant
ε1, and φ2 is the volume fraction of the low index material of a dielectric constant
ε2. The assumption of an effective refractive index reduces the crystal to a ho-
mogeneous material of the effective dielectric constant εeff . With εeff , the centre
frequency of the stopgap can be calculated [22]. Mostly, this approach provides a
first step to design a photonic crystal.

Photonic crystals attract a lot of interest, since they offer the potential of a
huge control over light. Propagation control is achieved by deliberate introduction
of defects into the perfectly periodic crystal. As a result, a highly localised fre-
quency state appears in the forbidden range of the stop- or bandgap. An array of
defects should in principle transmit light of the localised frequency state without
any losses, as the light is forbidden elsewhere in the crystal. Moreover, the com-
plete lack of photon states in the bandgap of a photonic crystals can be used to
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1.1 Theoretical aspects

control spontaneous emission of an emitter inside the crystal [23]. If the emission
wavelength lies within the photonic bandgap, inhibition of emission takes place.

1.1.2 Two-dimensional photonic crystal slabs

A photonic crystal slab consists of a guiding layer of a high index material that con-
fines light in the z-direction by total internal reflection. Into this slab, a periodic
variation between two dielectric materials is introduced, e.g., by drilling a square
or triangular lattice of air rods. Figure 1.3 schematically depicts a photonic crystal

x

y
z

Figure 1.3: Two-dimensional photonic crystal slab consisting of a dielectric slab in which
a lattice of air rods is introduced. If the slab is suspended in air the highest possible index
contrast is achieved.

slab, which consists of a dielectric slab surrounded by air that contains an arrange-
ment of air rods. In contrast to the two-dimensional photonic crystal depicted in
Fig. 1.1, the photonic crystal slab is not infinitely extended in the z-direction. For
such a special case of a two-dimensional photonic crystal with a triangular lattice
of air rods, the calculated dispersion relation is depicted in Fig. 1.4. The inset
shows the crystal lattice in real space (left) and the different crystalline directions
along the symmetry axis in the reciprocal space (right). The points Γ, M and K
are the centre and end points of the first Brillouin zone, respectively. The parame-
ters of the crystal used for this calculation are the periodicity a, the radius of the
air rods r = 0.32·a and the thickness of the slab h = 0.35·a. For the slab material,
a dielectric constant of ε=4.6656 was used, which corresponds to silicon-rich sili-
con nitride (Si3N4), as was used for the fabrication of the photonic crystal slabs
investigated in chapter 4.

The modes of the dispersion relation are represented in two different ways, by
open circles for even modes and by filled dots for odd modes. Translational sym-
metry is found inside the slab (x- and y-direction). This translational symmetry is
broken in the z-direction due to the existence of the slab. There, a symmetry axis
for mirror symmetry bisects the slab. The labelling of the modes (even and odd)
is defined by a mirror symmetry argument applied to the polarisation of the light
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Figure 1.4: Calculated dispersion relation for a two-dimensional photonic crystal slab
as shown in Fig. 1.3. The inset depicts the real space lattice and the Brillouin zone in
reciprocal space. Γ, M and K are the high symmetry points of the Brillouin zone along the
main crystallographic directions. The so-called light line gives the border between guided
light in the slab and non-guided light. For this three-dimensional finite difference time
domain calculation a dielectric constant ε =4.6656 is used. The triangular lattice has a
period a and the radius of the air rods is r = 0.32·a. The thickness of the slab is h= 0.35·a.

in the z-direction. Even modes show a mirror symmetric polarisation distribution
within the amplitude mode profile of the field and odd modes an asymmetric mode
profile. As a result, the zero order modes of the slab of transverse electric (TE)
polarised light correspond to the even modes, where the electric field component
lies within the slab plane (x-y plane). The transverse magnetic (TM) polarised
light, corresponds to the odd modes, with the magnetic field component in the x-y
plane.

The existence of the slab has other consequences as well. In the slab, light is
confined by index guiding in the z-direction. Outside of the slab, a continuum of
modes (shadowed area) is present. A black line, called the light line, represents the
border between guided light (below the light line) and the continuum and the non-
guided light (above the light line) of the slab. The bands of even and odd modes
that are located in the continuum can couple to modes of the continuum and are
therefore called resonant modes (also called leaky modes). Those modes can be
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1.2 Fabrication of photonic structures

accessed directly by far-field methods from above or below the slab and are topic
of the investigations in section 4.1.2. The properties of guided modes below the
light line can be investigated by far-field reflection or transmission measurements
performed in the plane of the slab. The nature of these modes is an interesting
topic for local investigations performed, e.g., with near-field methods.

From the calculations shown in Fig. 1.4, we find the following relevant stopgaps
and a bandgap. A two-dimensional bandgap is calculated for frequencies between
0.45 and 0.50 for even modes and indicated by a light gray region. Along the Γ - K
direction a stopgap is present ranging from 0.45 to 0.53. For the Γ - M direction
a stopgap is found between 0.42 and 0.50. For odd modes the calculated stopgap
in the Γ - M direction ranges from 0.52 to 0.53 and along the Γ - K direction from
0.57 to 0.61.

1.1.3 Three-dimensional photonic crystals

The three-dimensional photonic crystals investigated in this thesis consist of poly-
styrene spheres. The arrangement of the spheres is a close-packed hexagonal
order, which is in our case a face centred cubic (fcc) lattice of a volume frac-
tion φpolystyrene =0.74. Figure 1.5 depicts the band diagram calculated for such
polystyrene opals. The calculations have been done with a H-field inverted matrix
method [24], [25]. The inset on the right side depicts the Brillouin zone of the fcc
lattice and its high symmetry points [21]. The calculation show various stopgaps
along different crystalline directions. We determine a first order stopgap along
Γ - L that ranges from 0.58 - 0.62 in frequency. For the crystalline Γ -U (symmetry
equivalent to Γ - K) direction, a stopgap between 0.70 and 0.77 is found. For the
Γ - W direction a stopgap for frequencies between 0.74 and 0.82 is determined. In
the Γ - L direction, a range of second order Bragg diffraction is indicated by a gray
area in Fig. 1.5. The corresponding frequency range from 1.13 to 1.24 is delimited
by bands with a lope roughly equal to the average index neff .

1.2 Fabrication of photonic structures

The fabrication of photonic crystals has improved rapidly. For one- and two-
dimensional crystals, mostly lithographic methods are used. Very flexible ap-
proaches are direct sequential writing with e-beam [26] or direct writing with a
focused ion beam (see chapter 1.2.1). These two methods give the highest flexibility
in the design as any arbitrary feature shape can easily be implemented. However,
for the purpose of large one- and two-dimensional structures, methods like X-ray
lithography [27], deep UV lithography [28] or laser interference lithography [29]
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Figure 1.5: Calculated dispersion relation for a three-dimensional artificial opal of
polystyrene spheres. The spheres are arranged in a face centred cubic (fcc) lattice and
close-packed with a volume fraction of 74 %. As dielectric constant for polystyrene ε= 2.53
was used. The inset shows the fcc unit cell in reciprocal space for such a crystal. The gray
areas indicate stopgaps along different crystalline directions.

are more appropriate. For the design of three-dimensional structures lithographic
methods are available as well [19], [30]. However, holographic methods [31] or
self-assembling processes are less time consuming (e.g., [18], [32] and [33]).

To control the flow of light, defects have to be introduced on purpose. This
is easiest for one- and two-dimensional crystals and more difficult in a three-
dimensional crystal, where work is in progress [34]. The materials used for photonic
crystals are mainly dielectrics to reduce absorption as much as possible, since a
photonic bandgap results from multiple scattering. Some more exotic crystals are
made of magnetically active material [35] or carbon nanotubes [36]. An other way
to modulate light in waveguides are plasmonic structures (e.g., [37], and references
therein). Small metal particles on waveguides offer an alternative to the photonic
crystal air rod structures.
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1.2 Fabrication of photonic structures

1.2.1 One-dimensional periodic arrays fabricated with
focused ion beam milling

For the fabrication of one-dimensional periodic structures on the nanometre scale
a fast and flexible approach is described in this section. As a basis for all structures
investigated in chapter 3, we us a silicon-nitride (Si3N4) channel waveguide on top
of a 3.2µm SiO2 layer on a Si-substrate. The 55 nm thick Si3N4 layer is deposited
by low-pressure chemical vapour deposition (LPCVD). By reactive ion etching
(RIE) a waveguide ridge is etched into the Si3N4 layer with a height and width of
11 nm and 1.5µm, respectively. Thus, a slab layer of 44 nm thickness surrounds the
waveguide ridge. Figure 1.6 depicts the cross-section of the waveguide structure
used.

55nm44nm
Si N

(2.06)
3 4

3.2 mm

SiO

(1.46)
2

1.5 mm

x

y
z

Figure 1.6: Illustration of the cross-section of the channel waveguide, which is used as a
basis of all our one-dimensional photonic crystal structures. The guiding layer is silicon-
nitrice (Si3N4), which is grown on top of a siliondioxide SiO2 layer. The geometrical
dimensions and the refractive indices of the material are given in the figure.

With a focused ion beam machine (FIB, 200 FEI) we have fabricated nanometer-
size structures in the channel waveguides. Gallium-ions of an energy of 30 keV are
used to sputter material from the sample. The beam current can be varied in
discrete steps between 1 pA and 70 pA. Different structures have been fabricated
of arbitrary shapes. The structures discussed in this thesis consist of nanometer
scale air rods and slits. The smallest possible feature that can be fabricated in
these waveguides was found to be an air rod of 30 nm in diameter.

Figure 1.7 shows two examples of structures produced with the FIB. The im-
ages were obtained by scanning electron microscopy (SEM), to prevent uninten-
tional damage that results from imaging with the FIB. In both images, the channel
waveguide, running in the vertical direction, is clearly visible. Figure 1.7 a shows

19



Chapter 1. Photonic crystal structures

1 mm1 mm
a b

Figure 1.7: Two examples of periodic structures fabricated by focus ion beam milling
in a Si3N4 channel waveguide. a) 23 slits in a periodic array, where two slits are missing
in the centre of the array. The missing slits represents a cavity in the periodic structure,
where light can be localised. b) Quasi-two dimensional structure of an array of 138 air
rods.

a periodic arrangement (a= 220 nm) of slits (110 nm× 3.0µm). In the centre of
the array, a defect is introduced by leaving two slits out. Figure 1.7 b shows a
quasi-two dimensional photonic structure, where a two-dimensional array of 138
air rods (diameter d =110 nm) is milled into the waveguide. The two examples
highlight the flexibility of the FIB technique as any desired feature shape as well
as any periodic arrangement can be fabricated.

It turns out that the minimal size of the fabricated features in Si3N4 is not
determined by the focal spot size of the FIB (∼ 8 nm), but rather by charging of
the non-conducting Si3N4 layer. As a result, increasing the milling time results
in larger feature sizes. To prevent the charging, a thin conducting carbon layer
(∼ 20 nm) was deposited on top of the Si3N4 before milling. The carbon was
removed afterwards by Oxygen-plasma etching.

A single slit in a waveguide was fabricated using a beam current of 4 pA and an
exposure time of 57 s. The slit has a width of 160 nm and a length of 1.8µm. This
slit is investigated in section 3.1.1 using a near-field technique. In section 3.1.2
two different periodic structures are investigated: a ridge waveguide containing 15
air rods and a ridge waveguide containing an array of 15 slits. Figure 1.8 shows
the periodic array of air rods. Both arrays, the air rods and the slits, are designed

20



1.2 Fabrication of photonic structures

1 mm

Figure 1.8: Array of 15 air rods milled into the centre of a waveguide ridge. The diameter
of the air rods is 110 nm and the periodicity of the array 220 nm.

with a periodicity of a =220 nm. The diameter of the air rods is 110 nm. The
slits are 110 nm wide and 2.5µm long. In both cases, the milling was performed
such, that the feature depth is approximately 70 nm. The high-index Si3N4 layer
of 55 nm is therefore penetrated completely.

1.2.2 Freestanding two-dimensional photonic crystal
slabs produced by laser interference lithography

The two-dimensional photonic crystal slabs presented here are freestanding mem-
branes produced by laser interference lithography [29]. Quite often, the index
contrast between guiding layer and the surrounding lower index medium is not
high enough to achieve large stopgaps. By embedding the guiding layer in air,
the highest possible index contrast is achieved.Fabrication of an extended free-
standing photonic crystal slab is challenging, since the slab must be connected to
supports and the material of the slab must be stiff enough to prevent collapse.
Fig. 1.9 shows a schematic of such a crystal slab.

The basis for the photonic crystal slab is a three layer composite. A silicon-rich
silicon nitride (Si3N4) layer is deposited by low-pressure chemical vapour deposi-
tion (LPCVD) on a thermally grown, 3.2µm thick SiO2 layer on top of a Si-wafer.
The slightly increased Si concentration reduces the stress in the layer and increases
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Figure 1.9: Schematic drawing of the photonic crystal slab. A triangular pattern of air
rods is etched into a Si3N4 layer. An air gap underneath the Si3N4 layer ensures symmetry
of the structure in the z-direction.

the resistance of the membrane against collapse. With laser interference lithogra-
phy, a triangular pattern of dots is developed in a photoresist layer on top of the
Si3N4 layer. The pattern of the photoresist dots is transferred into a chromium
mask via lift-off and subsequently etched into the Si3N4 layer by reactive ion etch-
ing. The air rods in the Si3N4 allows the production of an air gap underneath the
guiding layer through wet etching such that a freestanding membrane results.

The Si3N4 slab has a refractive index of n =2.16 (ε= 4.6656) at λ0 =600 nm.
For the fabrication of the membrane investigated in chapter 4 the following design
parameters were used. The thickness of the Si3N4 layer is 120 nm. The width and
length of the photonic crystal are 100µm and 4 mm, respectively. The air gap
underneath the Si3N4 layer is 3.2µm corresponding to the thickness of the SiO2

layer. The triangular lattice of air rods has a lattice parameter of a =343 nm. The
fabricated air rods have an elliptical shape with a long axis and short axis of 125 nm
and 93 nm, respectively. The long axis points into one of the Γ -M direction. This
asymmetry leads, in principle, to a more complex unit cell. However, the influence
on the band diagram and the gap size was calculated and determined to be small.

Figure 1.10 depicts a SEM image of the photonic crystal slab performed under
an angle to show both the top and the side view. The triangular arrangement of the
air rods is clearly visible. Note, that the SEM image shows only a small fraction of
the membrane (< 0.2 0/00). It can be seen that the membrane is connected directly
to the support, which separates the membrane by 3.2µm from the Si-wafer in the
z-direction. The photonic crystal slab does not extend all the way to the support.
The final ∼ 7µm of the membrane is free of holes due to under etching effects.
The end facet of the membrane runs along the Γ - M direction of the hexagonal air
rod pattern. The membrane ends ∼ 50µm before the wafer ends.

22



1.2 Fabrication of photonic structures

1.5 mm

Figure 1.10: SEM image of the side of the fabricated photonic crystal slab. The image
shows only a very small fraction (< 0.2 0/00) of the entire photonic crystal. On the right
side the support to which the membrane is connected is visible and the air gap underneath
the slab can be seen.

The optical properties of a photonic crystal slab are described by the disper-
sion relation, which was discussed in section 2.2 (Fig. 1.4). Since the material
properties and the geometrical dimensions are known, we can calculate the effec-
tive refractive index of the photonic crystal slab using Eq. 1.2. With φair =0.36
and φSi3N4 =0.64, we calculate the effective refractive index of our photonic crys-
tal slab to be neff =1.83. The effective refractive index of the crystal is a useful
characteristic parameter that will be used in the following.

Freestanding photonic crystal slabs have also been fabricated by e-beam lithog-
raphy (e.g., [38]). The advantage of our structures is the homogeneity of the lattice
over a large area. Especially for far-field investigations, as we will perform, where
averaging over many unit cells takes place, the homogeneity is an important issue.
In addition, e-beam writing of such large areas is time consuming.

1.2.3 Artificial opals made by self-assembly

The three-dimensional photonic crystals, investigated in chapter 5, are fabricated
by self-assembly [39]. A colloidal suspension of polystyrene latex spheres in water
was used (Duke Scientific). By slow sedimentation the crystals were grown. Af-
terwards, they were carefully dried by evaporating the water over a time of about
1 - 2 months. The process results in artificial opals of polystyrene spheres.

We investigate opals of five different sphere sizes: r = 120 nm, r = 129 nm,
r= 180 nm, r = 213 nm and r = 241 nm. The monodispersity of the spheres is better
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Figure 1.11: Polystyrene opals of different sphere radii imaged with an optical reflection
microscope: a) r= 120 nm, b) r = 129 nm, c) r = 180 nm, d) r = 213 nm, and e) r = 241 nm.
As can be seen in a) to d), the crystals are glued to an optical fibre for ease of handling in
the near-field experiments. The images show different wavelength ranges reflected, when
the Bragg condition is fulfilled. These wavelength ranges correspond to the forbidden
frequencies in the Γ - L stopgaps.

than 2%. The volume fraction of the crystals is φpolystyrene =0.74 [39]. The refrac-
tive index of polystyrene is n =1.59. Using Eq. 1.2 leads to an effective refractive
index neff =1.46± 0.07.

Fig. 1.11 shows optical reflection microscope images of the different crystals.
The images clearly show strong reflections of distinct wavelength ranges. The
large coloured areas indicate the long-range homogeneity of the crystals. The
reflected wavelength ranges observed correspond to frequencies in the first and
second order stopgaps along the Γ - L crystalline direction (see Fig. 1.5). The band
diagram calculations predict a first order Γ - L stopgap centred at ω =0.60. In
Table 1.1 we show the calculated centre wavelength of the stopgap for the crystals
of different sphere size. The crystal of sphere radius r = 120 nm has its first order
stopgap at 566 nm, which corresponds to the yellow colour observed in Fig. 1.11 a.
A red colour is observed for the r= 129 nm crystals, which corresponds to the
first order gap at 608 nm (Fig. 1.11 b ). For the larger sphere sizes, the first order
Γ - L stopgap moves out of the visible wavelength range to the near-infrared. A
second order stopgap range approaches the visible window. For the r = 180 nm
crystal in Fig. 1.11 c, we observe the dark blue colour. This second order stopgap
region moves up in wavelength for increasing sphere size, similar as the first order
stopgap. We observe reflection of green light (Fig. 1.11 d ) and red (Fig. 1.11 e ),
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r λ Γ−L

120 nm 566 nm
129 nm 608 nm
180 nm 849 nm
213 nm 1004 nm
241 nm 1136 nm

Table 1.1: Calculated stopgaps for polystyrene opals for different sphere sizes. For the
calculation we used the determined stopgap frequency ω =0.6 from the band diagram.

for r = 213 nm and r= 241 nm, respectively.
As can be seen in Fig. 1.11 a to 1.11 d, the crystals are glued to an optical fibre

to enable careful handling. The glue used is rapidly drying such that it can not
soak the crystal by capillary forces, which would affect the optical characteristic
of the crystals. The actual size of the crystals is in the millimeter range.
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Chapter 2

Probing of light propagation

Optical characterisation of complex materials is possible by different methods.
Mostly, far-field reflectivity or transmission measurements, which can be compared
directly with simulations, are performed. In photonic crystal structures, the lo-
cal probing of light properties becomes essential. The relevant length scale of the
crystals is below the wavelength of light, thus sub-wavelength detection is required
to obtain full insight in the physical properties of photonic crystals. In this chap-
ter investigation methods (near-field and far-field techniques) used in this thesis
are introduced. The far-field reflectivity measurements provide important informa-
tion about the stopgaps of crystals. Reflectivity spectra obtained as a function of
incident angle provide details about the coupling of light to crystal modes. The
near-field techniques enable the study of local optical properties of light inside the
crystal structure, with sub-wavelength resolution.
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2.1 Near-field scanning microscopy

To investigate local properties of light, e.g., interference effects or scattering phe-
nomena, a resolution beyond the wavelength of light is required. As a result,
optical microscopy can only be used, when the diffraction limit is overcome. Us-
ing evanescent fields of light, the diffraction limit can be overcome. In near-field
optical techniques, the basic idea is to access the evanescent fields (near-fields) of
a structure or to couple evanescent fields from a light source to a structure under
investigation. To access the evanescent fields, sub-wavelength probes that act as
an effective dipole are used. One specific possibility is to use a sub-wavelength
aperture probes as light source or as detector. The aperture to sample distance
has to remain smaller than the aperture diameter. In the specific case of using
aperture probes, the resolution of the measurements is completely determined by
the size of the aperture. In a near-field scanning optical microscope (NSOM), a
sharply tapered dielectric fibre probe can be used as aperture. An alternative to
aperture probe are metallic probes, where the apex of the probe has to be sub-
wavelength. With both approaches, optical details with a resolution beyond the
diffraction limit is achieved.

Different operation methods of a NSOM enable the detection of optical proper-
ties in illumination mode or collection mode. In illumination mode, the near-field
fibre probe acts as a light source to excite molecules or illuminate a sample. De-
tection takes place at the other side of the sample [40], [41]. A NSOM operating in
collection mode can be used to investigate local optical fields inside a sample [42].
In literature different names for NSOM can be found (e.g., SNOM, STOM, TNOM,
PSTM etc.).

With its small excitation volume (105 nm3) NSOM has advantages over confo-
cal detection (∼ 108 nm3) resulting in higher resolution and a better signal to noise
ratio. Moreover, the topography is acquired simultaneously. NSOM was the first
method to show single molecule detection at room temperature [43]. Moreover,
Raman spectroscopy, ultrafast microspectroscopy and multi-photon processes are
becoming relevant topics (e.g., [44]).

In this chapter, we focus on two special measurement setups and elucidate the
technical details such, that the measurements presented in the following chapters
are more easily understood.

2.1.1 Fabrication of near-field optical aperture probes

The heart of the near-field scanning microscopes described in this thesis, is the
near-field aperture probe. It is fabricated from single-mode optical fibre (cut-off
frequency depending on the experiment), by local heating and subsequent pulling
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2.1 Near-field scanning microscopy

to achieve a sharp taper region with a small end face (∼ 80 nm). The pulling is
performed with a CO2-laser based micropipette/fibre puller P-2000 (Sutter In-
strument Company). Pulling parameters, such as pulling strength, start velocity,
delay time and laser power, have to be adjusted to obtain an optimal taper of
the fibre. The pulled near-field fibre probes (tips) are sometimes directly used for
collection mode measurements on relatively flat structures (section 3.2.2). How-
ever, in strongly modulated structures, e.g., with large refractive index variations
on a scale comparable to the wavelength like photonic crystals, scattering of light
occurs. This light emanating from the structure can couple directly into the bare
fibre probe. Therefore, separating intensity distributions associated with propa-
gating light inside the structure is very hard from measurements obtained with
uncoated fibre probes. Moreover, for the near-field microscope operating in illu-
mination mode, a well defined aperture is required. For these reasons, our probes
are metal coated in a high vacuum evaporator (BAK600). First a thin chromium
layer of ∼ 1 nm and afterwards an aluminium layer of ∼ 100 nm thickness are de-
posited on the pulled fibres. The chromium layer is used to obtain better adhesion
of the aluminium. Other coating methods use for example a multilayer process of
alternating thin titanium and thick aluminium layers [45]. In the collection mode
near-field setup we have found that the metal coating strongly reduces the pick up
of scattered light and also prevents the detection of light that travels along and
just above the sample surface. Sofar, we have found no evidence for an influence
on the optical properties of the investigated structure caused by the probe with
its metal coating. Theoretical calculations predict a small effect [46]. To produce
a well defined circular aperture in the coating at the end facet of the tip, the coat-

200nm

Figure 2.1: Typical near-field probe after side-on milling by a focussed ion beam. A
circular aperture of a diameter ∼ 80 nm and the grainy structure of the 100 nm thick
aluminum coating are clearly visible.
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Chapter 2. Probing of light propagation

ing process is performed under an angle (shadow effect). The resulting apertures
can be cleaned up or enlarged to every desired dimension through side-on milling
with a focused ion beam (FIB, 200 FEI) [47]. Since the NSOM techniques became
established and commercially available, novel probe designs are receiving a great
deal of attention (e.g., [48], [49]).

Figure 2.1 shows the end face of a typical near-field probe fabricated by the
process described above. A circular aperture of ∼ 80 nm is clearly visible. The
image was acquired by the FIB by scanning the ion-beam with an ion current
of 4 pA and collecting secondary electrons coming from the tip. Even the grainy
structure of the aluminum coating is resolved.

The fabrication process of our fibre probes is highly reproducible and produces
probes that have a throughput of typically 10−5. In all measurements presented in
this thesis (expect for the shape evolution in space of a phase singularity) coated
fibre probes with aperture diameters between 80 nm and 110 nm were used. The
aperture size determines the optical resolution of the measurements. The lateral
topographical resolution is of the order of the diameter of the probe end face, but
usually much better. In that case a small Al grain located at the end face of the
tip results in an enhanced resolution.

J
critical

forbidden

allowed

forbidden

Figure 2.2: Illustration of coupling process of light coming from a near-field probe to a
sample. Propagating waves can couple to the angular range of allowed angles. Only near-
field (evanescent) waves can couple to forbidden angles. The transition between forbidden
and allowed is given by the critical angle ϑ for total internal reflection at the material
interface.
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Figure 2.2 sketches the principle of evanescent coupling from a sub-wavelength
aperture to a sample surface. If a near-field aperture probe is brought in close
vicinity to a sample, for example an artificial opal or a glass plate, not only propa-
gating light waves coming from the tip can couple to the sample. The propagating
light couples to the region of the so-called allowed angles. This is the range of
angles between the cone limited by the critical angle ϑc, that is defined by the
total reflection on the air-sample interface

sin(ϑc) =
nair

nsample
, (2.1)

where nair and nsample are the refractive indices of air and the sample, respectively.
In the case of a near-field probe close to the surface, evanescent field components
can couple to the sample. These field components will couple to the so-called
forbidden angles.

2.1.2 Photon scanning tunnelling microscopy

A near-field microscope operated in collection mode is called photon scanning tun-
nelling microscope (PSTM) [50]. A near-field probe picks up part of the evanescent
fields above a structure. Detection of the evanescent field at each surface position
allows a reconstruction of an optical intensity distribution that is associated with
the light propagating inside the structure. Mostly, our PSTM is operated for
investigation of light in the visible wavelength range, however, the setup has re-
cently been modified to enable investigations in the telecommunication windows
at λ=1.3 µm and λ=1.5µm.

Figure 2.3 shows the layout of our PSTM and the heterodyne interferometric
detection scheme. The principle is illustrated with a channel waveguide with an
inserted hole array as the photonic structure of interest. The optical fibre probe
(tip) is raster scanned over the surface of the structure under investigation. A
constant distance between tip and surface is maintained with a tuning fork based
shear-force height feedback mechanism [51]. Recording the applied piezo-voltage
of the height feedback yields the topography of the structure. The topographi-
cal details are visualised with an accuracy of ∼ 50 nm in plane and ∼ 1 nm in the
vertical direction. At a typical tip to surface separation of z∼ 10 nm, the evanes-
cent tail of optical fields in the structure is frustrated in the taper region of the
fibre probe. Hereby, a propagating mode inside the fibre is excited, which is subse-
quently detected with a photo multiplier tube (PMT). From the detected intensity
as a function of tip position on the sample, a map of the optical intensity inside
the structure is constructed. Optical and topographical information obtained in
this way contain details on the nanometre scale and reveal local sample properties.
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Figure 2.3: Layout of the interferometric PSTM, which consists of a conventional PSTM
incorporated into one branch of a Mach-Zehnder interferometer. Two acousto-optic modu-
lators (AOM) in the reference branch enable heterodyne detection. A standard photon-
multiplier tube (PMT) is used as detector. The fibre probe is scanned across the photonic
sample with piezo actuators. In this way, the heterodyne interferometric PSTM measures
the amplitude and the phase of the propagating light simultaneously with the topogra-
phy of the structure. This setup enables a full optical investigation of light waves inside
photonic structures.

On this scale such information can not be gained by far-field techniques, which
are, by their nature, limited by diffraction. Only by strong local scattering or in-
duced luminescence can far-field methods show local fields with diffraction limited
resolution.

Already in 1993, a heterodyne detection in a near-field scanning optical micro-
scope was introduced to investigate phase effects on a test structure [52]. Adopting
a similar concept, we incorporated the conventional PSTM into one branch of a
Mach-Zehnder interferometer (see Fig. 2.3) to detect the phase of light propagat-
ing inside a structure [53]. To enable heterodyne detection, the optical frequency
of light in the reference branch is shifted by 40 kHz with two acousto-optic modu-
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lators (AOM). Light collected by the near-field probe (signal) is interfered with
light in the reference branch by using a 2× 2 fibre coupler. The resulting intensity
is detected by the PMT. The PMT signal and the reference of the 40 kHz are both
fed to a Lock-in-Amplifier to produce two signals I1 and I2 with

I1 ∝ As ·Ar · cos(ϕ) and I2 ∝ As ·Ar · sin(ϕ) . (2.2)

Here, As and Ar are the optical amplitudes of the signal and reference branch,
respectively and ϕ is the optical phase difference of light in the two branches.
From the measured signals, we extract the amplitude, the cosine and the sine of
the phase:

As ∝
√

I
2

1 + I
2

2 , (2.3)

cos(ϕ) =
I1√

I
2

1 + I
2

2

and sin(ϕ) =
I2√

I
2

1 + I
2

2

. (2.4)

Thus, amplitude and phase of the optical field in the sample are separated. Fig-
ure 2.4 shows an example of a PSTM measurement. In Fig. 2.4 a the waveguide
ridge is clearly visible. Figure 2.4 b shows the signal produced by the Lock-in-
Amplifier (Eq. 2.2). Horizonal stripes indicate the interference of light. The
brighter colour in the waveguide region indicates an increased optical intensity
with respect to the left and right side of the waveguide. Figures 2.4 c and 2.4 d
show the separated amplitude and phase information of the optical field, respec-
tively.

a b c d

Figure 2.4: Measurement of a straight channel waveguide. a) depicts the topographical
image obtained simultaneously with b), the optical information consisting of the multi-
plication of the amplitudes and the phase difference of the interfering signals. c) and d)
show the separated amplitude and phase information as obtained with Eq. 2.3 and Eq. 2.4,
respectively. Image sizes: 3.9µm× 2.3 µm.
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During a measurement the length of the reference branch is kept constant,
whereas the length of the measurement branch changes as the probe collects light
from different positions of the sample. As a result, interference fringes are observed
as the tip position is varied (see Fig. 2.4 b ). They can be directly interpreted in
terms of the phase of the light inside the structure (see Fig. 2.4 d ). Consequently,
the observed periodicity of either sin(ϕ) or cos(ϕ) corresponds to the wavelength
of light inside the structure.

The two branches of the Mach-Zehnder interferometer consist of both bulk
optics and fibre optics. A box around the setup strongly reduces thermal drift and
air flow that would otherwise disturb the sensitive interferometric measurement.
The stability and drift of the phase measurement is checked. To this end, a line scan
along the waveguide axis is observed in time before and after each measurement to
observe any changes in position of the phase pattern. A phase drift smaller than
π in 15 minutes is considered sufficiently small.

2.1.3 Illumination mode near-field scanning optical mi-
croscopy

The near-field scanning optical microscope (NSOM) used for our investigations is
operated in illumination mode [54], in which light emitted by the probe is detected
on the other side of the sample. Figure 2.5 shows a schematic of the experimen-
tal setup used to investigate the three-dimensional colloidal photonic crystals. A
conventional NSOM setup projects the small excitation volume onto a detector
with a high NA objective (e.g., [54], [55]). We have modified this detection path.
To investigate the coupling of light coming from a point-like source to a crystal
together with transmission properties of a photonic crystal, a photodiode is posi-
tioned directly beneath the sample to collect the transmitted light. In this way
all the light coming from the bottom crystal facet is collected and averaged over
the full extent of the facet. This is beneficial for our investigation, since local
variations in the out-coupling efficiency at the bottom of the crystal are averaged
and thus the setup only detects in-coupling effects with sub-wavelength resolution.
The fibre probe is kept at a constant height of z∼ 10 nm from the sample surface
using a shear-force feedback mechanism [51], while the sample including detector
is scanned in the x-y plane. As the crystal is scanned underneath the tip, the po-
sitional dependent coupling and subsequent transmission of light coming from the
near-field probe through the sample is measured. The topographical information
of the samples under investigation is simultaneously measured with the optical sig-
nal. The technique may, under certain conditions, yield information on the local
density of states (LDOS) [56] at the interface of a photonic crystal.
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Figure 2.5: Schematic of the illumination mode near-field setup. Light from a point
source (near-field aperture probe) is launched to the three-dimensional photonic crystal.
By scanning the fibre probe relative to the crystalline surface, the light transfer can be
studied as a function of launching position. A photodiode, mounted underneath the crys-
tal, detects all the light reaching the rear of the crystal.

2.1.4 Three-dimensional measurement mode

The operation of PSTM/NSOM in shear force feedback results in an optical re-
sponse image at a certain contour of constant force interaction, typically at a
distance of z∼ 10 nm. The topographic structure can influence the optical con-
trast [57]. A truly reliable investigation requires the mapping of the full three-
dimensional field distribution above the sample, i.e., including measurement in
the z-direction [58]. Figure 2.6 shows schematically the three-dimensional mea-
surement mode, which is implemented in both our setups (PSTM and NSOM). By
moving the probe perpendicular towards and away from the sample surface the
intensity of the optical signal is measured as a function of probe height in both,
the retraction and approach trajectory. We consider the PSTM measurements on
a waveguide structure. The gray plane in the left sketch in Fig. 2.6 is the constant
gap measurement obtained in a standard force feedback measurement. The ap-
proach or retraction curves will yield the exponential decay of the evanescent field
of the light inside the waveguide. Performing approach curves at different posi-
tions on the sample allows the reconstruction of images at different planes parallel
and perpendicular to the sample. In the sketch on the right side in Fig. 2.6,
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some reconstructed planes are depicted: the (x,y)-plane is oriented parallel to the
sample, the (x,z)-plane and the (y,z)-plane perpendicular. The three-dimensional
measurement mode provides a test of the reliability of the near-field pattern and
is an important part of any near-field setup. Moreover, the measurement reveals
to which extent stray and scattered light contribute to the optical signal in the
constant shear-force measurement.

near-field probe
with 100nm aperture

x

y
z

~ 10 nm

(x,z)

approach
curve

(y
,z

)

(x,y)

Figure 2.6: Three-dimensional measurement mode. At each position in the (x,y)-plane, a
retraction and an approach curve is measured. In this way, measurement images at planes
oriented parallel to the sample, (x,y)-plane, and oriented perpendicular to the sample,
(x,z)-plane and (y,z)-plane, can be reconstructed. Moreover, one approach curve contains
all the information to determine whether or not the near-field measurement contains light
scattered directly from a structure or topographical artefact.

2.2 Far-field reflectivity methods

The optical characterisation of photonic crystals is mostly carried out by far-field
techniques. Far-field methods provide a good, spatially averaging method to in-
vestigate the overall properties of a photonic structure. As such they are comple-
mentary to near-field techniques that reveal more local and detailed information.
By transmission and reflectivity measurements, stopgaps, e.g., [8], [33] or guided
modes [59] can be investigated. Losses through, e.g., y-junction embedded in a
photonic crystal have been investigated [59], [60]. It has been shown that two-

36



2.2 Far-field reflectivity methods

dimensional photonic crystal slabs enables trapping of photons [7]. Group-velocity
dispersion in linear waveguides in a photonic crystal slab have been measured [61]
and the propagation of ultrashort nonlinear pulses investigated [62]. Moreover,
angle-dependent reflectivity spectra on two-dimensional photonic crystals reveal
coupling to resonant modes (modes above the light line) [63] of the structure
(e.g., [64], [65] and [66]). Moreover, time-resolved pulse propagation and sponta-
neous emission of laser dyes located inside the crystal have been investigated [8].

In this thesis we use reflectivity measurements to determine the stopgaps of
the two-dimensional photonic crystal slab and of the three-dimensional polystyrene
opals. In addition, we investigate the coupling of incident light to resonant modes
of the two-dimensional photonic crystal slab. To this end, we perform angle-
dependent reflectivity measurements that are briefly elucidated in the following.

2.2.1 Normal incidence

To probe the stopgaps on the two- and three-dimensional photonic crystals, normal
incidence reflectivity spectra are performed with two different setups. For the mea-
surements on the polystyrene opals, we use a Biorad Fourier-Transformation spec-
trometer (FTS6000) [67]. Light from a Tungsten-Halogen-lamp passes a Michelson
interferometer, of which the end mirror of one branch is moved continuously for-
and backwards with a frequency of 50 kHz. This enables heterodyne detection (see
section 2.1.2). The white light is then focussed with an objective of a numerical
aperture (NA) of 0.17 on to the sample surface. The same objective is used to
pick up the reflected spectrum, which is subsequently detected by a convectional
Si-diode. The spectra are obtained with a frequency resolution of 16 cm−1.

A different setup is used to obtain reflectivity spectra on the two-dimensional
photonic crystal slab. White light is provided from an ozone-free Xenon-lamp
(75W, shortarc). With an objective of a NA = 0.4 (20×), the linearly polarised
beam is focused to a spot with a diameter of ∼ 40µm at the endface of the mem-
brane. A Nitrogen cooled CCD camera detects the spectra from 500 nm to 1000 nm.
The resolution of the spectra is 3 nm and the camera has a very low dark current.

In both setups described, we use the same objective for the detection of the
reflected light as for the illumination of the sample. Due to the focussing of the
beam, we have a range of wavevectors available in addition to the wavevectors
parallel to the crystalline direction of interest. The angular spread of wavevectors
is given by

sin(ϕair) =
NA√
εair

and sin(ϕcrystal) =
sin(ϕair)√

εeff
, (2.5)

where ϕair is the angular spread of incident and reflected wavevectors in air and
ϕcrystal the resulting angular spread of wavevectors in the photonic crystals. The
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Chapter 2. Probing of light propagation

value of ϕcrystal predicts to which extent the different directions in the reflectivity
spectra are probed.

We calculate the angular spread of wavevectors for the specific setups used
on the two-dimensional photonic crystal slab. The numerical aperture of the used
objective is 0.4. As a result, a spread of wavevectors in air is available over ± 23.6 ◦.
The effective index of the two-dimensional photonic crystal slab was calculated
earlier and is 1.83. With this, the wavevector spread in the photonic crystal slab
probed by the in-plane reflectivity is determined to be ϕSi3N4 =± 12.6 ◦. Similarly,
we calculate the spread of wavevectors provided in the reflectivity measurements
on the opals. With the NA =0.17 of the objective used, the spread in air becomes
ϕair =± 9.8◦. For the polystyrene opals the effective refractive index is neff =1.46.
The angular spread is ϕopal =± 8 ◦. In both reflectivity measurement setups, the
wavevector spread is reasonable small. It is expected, that the reflectivity spectra
are influenced only slightly, i.e., a broadening of the stopgaps can occur.

2.2.2 Specular reflectivity

In the band diagram of a two-dimensional photonic crystal slab three types of
modes are described: bound states or guided modes (below light line), resonant
states (above light line) and a continuum of modes in air (gray area). By measuring
angle-dependent (also called specular) reflectivity spectra on a photonic crystal
slab, the resonant states are probed and part of the dispersion relation can be
reconstructed.

Figure 2.7 shows the principle of the specular reflectivity measurement. A
parallel beam of white light, with a size of 300µm× 2mm, is incident on the
photonic crystal slab under an angle Θ. Reflection takes place and a spectrum
is measured under a reflection angle of −Θ as shown in Fig. 2.7. If the length
of the wavevector projection k// and the optical frequency ω of the incident light
match those of a resonant state of the photonic crystal slab, coupling occurs and a
resonance feature is observed in the reflection spectrum. Extracting the frequency
of the resonance from the spectrum provides the information needed to reconstruct
the dispersion relation of the resonant modes, as the optical dispersion relation of
air combined with simple trigonometry suffices

k‖ = k · sinΘ = ωres · sinΘ =
a

λ0,res
· sinΘ , (2.6)

where k is the dimensionless wavevector of incident light at resonance, ωres is the
dimensionless frequency at resonance, λ0,res is the vacuum wavelength of light at
resonance, Θ is the angle of incidence, c is the speed of light in vacuum and a is
the periodicity of the lattice.
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Figure 2.7: Top reflection setup used to measure angle-dependent spectra. A parallel
beam of white light is incident on the photonic crystal slab under an angle Θ. The detector
is positioned under an angle −Θ, to measure the spectra of the reflected light.

Far-field reflectivity measurements enable probing light properties of guided
and non-guided modes of photonic crystal slabs. This combination provides a
good insight to the optical properties of the photonic crystal slabs.
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Chapter 3

Light scattering of sub-wavelength
dielectric structures

Photon scanning tunnelling microscopy enables the visualisation of the optical field
distribution of propagating light in a structure (e.g., a channel waveguide) with sub-
wavelength resolution. First, we map the fields around nanometer size scatterers,
such as a single slit, a periodic array of 15 slits and a periodic array of 15 air
rods that are milled into a channel waveguide. The obtained information reveals
material properties of the three-dimensional waveguide layer composite. Moreover,
scattering phenomena in front of the structures are scrutinised and provide infor-
mation that is not possible to observe with far-field methods, like the excitation of
leaky modes.

In the second part, we present observation of the phase of light around the
15 air rod structure. There, interference between incoming light and circularly
scattered waves gives rise to phase jumps and phase singularities. Using the three-
dimensional measurement mode, we study the shape evolution of such phase sin-
gularities as a function of tip to sample separation. Furthermore, to show the im-
portance of the three-dimensional measurement mode, we investigate a waveguide
containing two slits, where scattered and guided light are directly discriminated on
their propagation and non-propagation character.
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Chapter 3. Light scattering of sub-wavelength dielectric structures

3.1 Local optical intensity distributions

Investigations by photon scanning tunnelling microscopy (PSTM) provide optical
details about the flow of light. The optical fields in waveguides [68], junctions [69]
and microcavities [70] structures have been investigated visualised. Not only the
optical field distribution of light inside a structure is measured, but simultaneously
the topography of the structure itself is mapped. This allows direct determination
of the geometrical influence of the light flow. We use a phase-sensitive PSTM that
also allows detection of the phase evolution of light inside the structure [53], [71].
With this method, a complete characterisation of the locally propagating optical
fields is possible.

Studies of the local optical field distributions in photonic crystal structures are
attracting a lot of interest as they will contribute to a better the understanding of
the optical properties and to the optimisation of the crystals for applications.
So far, local investigations in the near-field regime have only been performed
on one- and two-dimensional structures (e.g., [72], [73], [74]). Investing a one-
dimensional periodic array of Au nanoparticles revealed an unexpected squeezing
of the optical near-field due to plasmon coupling [75]. By a scanning probe opti-
cal microscope combined with laser spectroscopy the transmitted light through a
waveguide-microresonator-waveguide structure embedded in a macroporous silicon
two-dimensional crystal has been investigated [76]. Most exciting, the near-field
technique could allow imaging of local density of states [77], [56]. Moreover, the
technique was used for near-field optical lithography for fabrication of photonic
crystals [78].

In this chapter, the optical properties of light propagating in three different
waveguide structures is investigated using PSTM. First, a single slit milled into the
waveguide ridge is examined. In the second part, we visualise the light propagation
in and around periodic arrays consisting of 15 air rods and 15 slits in a channel
waveguide. The fabrication details of the structures have been described in sec-
tion 1.2.1. The geometrical dimensions of the channel waveguide were chosen such
that for the interesting wavelength range between λ0 =585 nm and λ0 =647 nm
only the propagation of the fundamental transverse electric mode (TE00, electric
field in x-y plane) and no transverse magnetic mode (magnetic field in the x-y
plane) is supported. The experiments were performed with different laser sources:
a HeNe laser, an Ar / Kr laser and a tuneable frequency-doubled (Ti: Sapphire-
pumped) optical parametric oscillator. Light is coupled into the photonic struc-
tures with a microscope objective (0.4 NA, 20×).
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3.1 Local optical intensity distributions

3.1.1 A sub-wavelength single slit in a channel wave-
guide

Using a photon scanning tunnelling microscope (PSTM) we map the intensity of
light around a single slit in a waveguide. Figure 3.1 shows the PSTM measure-
ments. In the topographical image (Fig. 3.1 a ) the waveguide ridge and the slit
are clearly visible. The measurements show a height resolution of 0.5 nm and a
lateral topographical resolution better than 50 nm. Figure 3.1 b depicts the optical
intensity obtained simultaneously with the topography. Light of λ0 =632.8 nm is
coupled into the channel waveguide (∼ 4mm away from the image area) and propa-
gates from the top of the image to the bottom. In front of the slit, which is in the
upper part of Fig. 3.1 b, horizontal intensity stripes are clearly resolved. A peri-

light

a b

Figure 3.1: Simultaneously measured topographical a) and optical b) information of a
waveguide containing a single slit obtained with a PSTM. Clearly, the 160 nm wide slit in
the waveguide ridge is resolved in the high resolution topographical image. The optical field
distribution shows a periodic pattern resulting from interference between incoming light
(arrow indicates direction) and reflected light at the slit. Image size: 4.0µm× 20.0 µm.

odicity of roughly 216 nm is observed over a large range in front of the structure.
Just in front of the slit itself, an increased intensity is observed. We attribute this
increase in intensity to light that scatters directly from the slit into the aperture
of the coated fibre probe. Measurements with uncoated fibre probes contained
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Chapter 3. Light scattering of sub-wavelength dielectric structures

so much of this stray light, that investigations in a region of 680 nm around the
slit were impossible. Furthermore, Fig. 3.1b shows that some light is transmitted
through the slit and reappears as a guided mode of the waveguide behind the slit.

To analyse the periodic pattern in front of the slit with a good signal to noise
ratio, several adjacent parallel line traces along the centre axis of the waveguide
have been summed up. Figure 3.2 a depicts the average intensity obtained by
summing up 80 line traces from Fig. 3.1 b. The high peak corresponding to the
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Figure 3.2: a) Intensity graph constructed by summing up 80 line traces of the optical
image along the waveguide. The maximum of the high intense peak occurs at the material-
air interface of the single slit. b) Fourier transformation of boxed area of a). The clear
peak corresponding to a periodicity of 216 nm indicates that the interference pattern is
dominated by a standing wave set up by an incoming and a reflected TE00 mode. The
peaks at lower spatial frequencies (indicated by the arrows) are the result of interference
between the TE00 mode and leaky modes.

increased intensity in front of the slit is evident in Fig. 3.2 a. Moreover, the long
range periodic pattern in front of the slit is obvious. A Fourier transformation
over 10.5µm (dotted box in Fig. 3.2 a ) is shown in Fig. 3.2 b. A strong peak corre-
sponding to a periodicity of 216± 2 nm is observed. Obviously, this sub-wavelength
periodicity indicates that the pattern is caused by interference: reflected and in-
coming light built up a standing wave in front of the slit. As a result, we observe
that the wavelength of the guided mode is λTE00 =432 nm. Using the effective in-
dex method [79], we calculated that the refractive index of the fundamental TE00

mode is neff =1.4604, which leads to a wavelength of the mode in the material
of λTE00 =λ0/neff =433.3 nm. The agreement with the value obtained from the
measurement is perfect. At lower spatial frequencies additional peaks are visible
indicated by arrows in Fig. 3.2b. The decaying average intensity of light before
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3.1 Local optical intensity distributions

the slit (Fig. 3.2 a ) already hints at the origin of those peaks. The decay can
be fitted with an exponential function e−βx, where β =0.38µm−1 is found as de-
cay rate. Furthermore, we analyse the modulation depth M of the interference
pattern, which is given by

M =
Imax − Imin

Imax + Imin
. (3.1)

In a range of 3µm before the slit, the modulation depth is 0.48, which corre-
sponds to an amplitude reflection coefficient of 26 %. Further away from the slit,
the modulation depth has decreased to 0.40, suggesting a leakage of light out of
the waveguide. The decrease of the modulation depth far away from the slit, the
exponential decay of the average intensity and the peaks at lower spatial frequen-
cies in the Fourier transformation are attributed to the presence of so-called leaky
modes propagating in the opposite direction of the incoming light. These leaky
modes have a strong coupling to continuum modes in air and therefore have a
high loss rate. Theoretically, leaky modes are predicted for neff ranging from
1.4460 to 0.5508. To verify the existence of the leaky modes, we have calculated
the interference length between them and the incoming fundamental TE00 mode
of our waveguide. The resulting numbers of spatial frequencies are in agreement
with the measured ones. Apparently, the scattering of light, most probably due to
roughness of the slit walls, excites leaky modes.

The observation of light scattering into leaky modes exemplifies the power of
PSTM to identify local properties of optical fields. Since leaky modes are present
only within a few µm in front of the slit, there is no possibility to defect them with
conventional input / output methods.

3.1.2 Periodic arrays of 15 air rods and 15 slits

After the investigation of light scattering at a single slit we now investigate arrays
of scatterers. We focus on two different structures that consist of a ridge waveguide
containing a periodic array of silts and one containing a periodic array of air rods.

Optical intensity measurements

The topography of two different structures as obtained by PSTM measurements is
shown in Figs. 3.3 a and 3.3 c. The simultaneously obtained optical intensity maps
are presented in Figs. 3.3 b and 3.3 d. In both measurements, light is coupled into
the waveguide (incoupling position is at a large distance of ∼ 4mm from measure-
ment area) and propagates from top to bottom in the images. For the measurement
on the air rod structure (Fig. 3.3 b ) light with a wavelength of λ0 =647 nm was
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Chapter 3. Light scattering of sub-wavelength dielectric structures

light

ba c d

light

Figure 3.3: Measurement of two different structures obtained by PSTM. a ) and b ) show
the topography and the optical field distribution for λ0 =647 nm, respectively of a channel
waveguide containing 15 air rods. In the topographical image c ) the waveguide containing
15 slits is clearly resolved. The simultaneously obtained optical image for λ0 =610 nm
is shown in d ). The periodicity of both arrays is 220 nm, the air rods have a diameter
of 110 nm. The width and length of the slits is 110 nm and 2.5µm, respectively. In both
optical images, light propagates from top to bottom (arrow). In front of the periodic arrays
a standing wave is built by interference between incoming and light reflected by the rods
and slits. Behind both structures, some light recovers in the waveguide to a propagating
mode. The image sizes of a ) and b ) 5.8 µm× 11.1 µm (horizontal× vertical) and of c )
and d ) 4.0 µm× 18.3 µm (horizontal× vertical).

coupled into the waveguide. For the measurement on the slit array (Fig. 3.3 d ),
light of λ0 =610 nm was used.

In Figs. 3.3 a and 3.3 c, the 11 nm high waveguide ridges are apparent and the
periodic structures are easily resolved. From the topographical measurement, we
determine the dimensions of the waveguide and the array (we generally find that
the calibration of our PSTM agrees with the one of the FIB). The measured sizes
of the sub-wavelength features are given in table 3.1. The measured dimensions
differ slightly from the design values. We attribute the broadening of the features
to the fabrication process with the FIB. Especially, charging of the Si3N4 results
in enlargement of the feature sizes, even though a conducting carbon layer is used.
The waveguide width is probably broadened also by tip convolution effects.

In both topographical images, horizontal stripes are visible. In the lower part
of Fig. 3.3 c some of those stripes are pronounced. These are fluctuations in the
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3.1 Local optical intensity distributions

interaction between tip and sample probably caused by changes in the environment,
which make the feedback mechanism less stable. Note that these fluctuations in
height (7 nm at most) have no significant influence on the simultaneously recorded
optical signal (Fig. 3.3 d ).

Fig. 3.3 a (rods) Fig. 3.3 c (slits) Design values
waveguide width : 1558± 33 nm 1627± 13 nm 1500 nm
air rod diameter : 111± 37 nm 80 nm
slit width : 122± 30 nm 80 nm
slit length : 2333± 13 nm 2500 nm

Table 3.1: Values of waveguide and structure dimensions obtained from the measurements
shown in Fig. 3.3. For comparison the design values used for the fabrication are shown in
the last column. The measured values show reasonable agreement within the error range
of tip convolution effects. A slight broadening of the sub-wavelength features is observed
compared to the design values.

Figures 3.3 b and 3.3 d depict the measured optical intensity distribution of
light inside the structure. In both images the standing waves in front of the the
periodic array of air rods and slits, which was already observed in front of the single
slit, are clearly visible. Fourier transformation analysis reveals in front of the air
rod structure a periodicity of 221 nm and in front of the slit array a periodicity of
213 nm. Again, the periodicity corresponds perfectly to half of the wavelength of
the mode in the waveguide (λTE00/2). Table 3.2 presents an overview of the modal
wavelengths obtained from the measured standing waves and those calculated by
λTE00 =λ0/neff . The effective refractive index neff of the waveguide is calculated
by the effective index method [79] and λ0 is the vacuum wavelength of light. As
can be seen in table 3.2 good agreement between the measured and calculated
values is found.

The interference patterns just in front of the array structures differ in shape,
as can be seen in Figs. 3.3 b and 3.3 d. In the case of the slits the horizontal
stripes are straight, whereas in front of the air rod structure a slight curvature of
these stripes is observed. In front of a single air rod in a waveguide, we observe
similar curvature of the standing wave. A simple picture explains the origin of
the curvature. In the case of the air rod structure, the pattern is built up from
interference between circularly scattered waves and incoming plane waves. Such
interference leads to a parabolic curvature in the first few intensity stripes [50]. In
the waveguide with the slit array, light is reflected into a plane wave, resulting in
straight interference stripes.

Inside both the air rod array and the slit array a periodic pattern is still visible,
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vacuum wavelength experimental calculated
λ0 λTE00 air rods λTE00 slits λTE00

585 nm 398± 5 nm 406± 4 nm 399 nm
600 nm 405± 3 nm 407± 6 nm 410 nm
610 nm 416± 4 nm 426± 7 nm 417 nm
633 nm 428± 7 nm 439± 8 nm 433 nm
647 nm 441± 2 nm 446± 3 nm 443 nm

Table 3.2: The wavelength of light propagating in the waveguide as determined from the
periodicity of the standing waves. The first column gives the vacuum wavelength λ0 of
light. Second column: calculated wavelength ( λ0

neff
) of the TE00 waveguide modes. To

obtain these values, the effective index method [79] was used to calculate the effective
refractive index neff of the structure. The measured values λTE00 are given in the third
column for the air rod structure and in the fourth column for the slit array.

but the absolute optical intensity decreases inside both structures. In Fig. 3.3 b
it can be seen that light passes on the left and right side along the air rod array.
Beyond the final air rod, the fundamental mode of the unperturbed waveguide
recovers. The mode almost completely recovers after several hundred nanometers
beyond the final air rod. A different recovery process is observed after the 15 slit
structure in Fig. 3.3 d. Intensity minima and maxima occur in a non-periodic way.
Interestingly, with increasing distance beyond the slit array, the distance between
the minima increases.

To analyse data in more detail, line traces taken parallel to the waveguide axis
are investigated. Figure 3.4 a shows the average intensity produced by summing
up adjacent line traces over a ∼ 120 nm wide area in the centre of the waveguide
of the measurement in Fig. 3.3 b. In a similar way, Fig. 3.4 b has been constructed
by summing up adjacent line traces over a 1µm wide area from Fig. 3.3 d. In both
figures, the propagation direction of the light is from the left to the right. The
locations of the periodic arrays are indicated by the dotted rectangles.

In front of the periodic arrays in the left part of Figs. 3.4 a and 3.4 b the
periodic oscillations of the standing wave are visible. As discussed above and
shown in table 3.2, the pattern has a periodicity of half the wavelength of light in
the waveguide. A difference in the intensity profile of the standing wave in front of
the air rods and slits is clear. In front of the 15 air rods a continuous attenuation
of both intensity and the modulation depth M (see Eq. 3.1) is observed over a
range of 1µm. We find a modulation depth of 0.56 close to the air rod structure.
Further away from the 15 air rods as well as in front of the 15 slits the intensity
and modulation depth of the standing waves are constant. These observations
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Figure 3.4: Line traces obtained from the measurements in Fig. 3.3. To obtain a better
signal-to-noise ratio, several adjacent line traces were summed up to produce the graphs.
Light propagates from left to right. The dotted square gives the location of the 15 air rods
a) and 15 slits b), respectively. The graphs show clearly the standing waves in front of the
periodic structures. In graph b) a recovery with maxima and minima involved is observed.
We will analyse the distances ∆ xi between the minima occurring and the position of the
last slit.

on the two structures hold qualitatively for all wavelength of light investigated.
The decrease in intensity and modulation depth indicates a loss of coherence of
the standing waves. We attribute the loss of coherence to a combination of the
excitation of leaky mode (see section 3.1.1) and the circularly scattered waves. In
the case of 15 slits, no change in the modulation depth of the standing wave is
observed. The amount of scattering light into leaky modes is not measurable.

In front of both periodic structures a high intense peak is present, which was
also seen in front of the single slit. The peak intensity compared to the amount
of incoming light can be up to 2.5× in the case of the 15 slits and 1.6× for the
air rod structure. We attribute this high intensity of the first peak to light that
is directly scattered out of the slit into the aperture probes due to the impedance
mismatch between the ridge waveguide and the periodic structure.

In the region of the photonic structures (dotted rectangles), a periodic intensity
pattern is found as well. 15 peaks located inside the dotted rectangles are found
in both cases (Figs. 3.4 a and 3.4 b). The periodic distance between those peaks
corresponds to the periodicity of the array (220 nm) as determined with a Fourier
analysis. We observe for all wavelength used that the intensity pattern inside
the array have the periodicity of the array structure. Topographical artifacts in
the optical image can be excluded for two reasons. Firstly, the exponential decay
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Chapter 3. Light scattering of sub-wavelength dielectric structures

observed for the maxima of intensity inside the array does not reproduce for the
minima of intensity in the array. In the case of artifacts, one would expect to
observe for both, maxima and minima, the same decay. Secondly, the intensity
stripes found in the periodic region of the air rods are elongated in the horizontal
direction. An artifact induced by topography would result in a symmetric pattern
with a dimension roughly corresponding to the probe size convoluted with the
air rod diameter. Our apertures are circular symmetric, so an elongation in one
direction only is not possible. We therefore suggest that direct probing of so-called
Bloch modes takes place. Such an observation is only possible with sub-wavelength
detection methods.

Behind the periodic structures, light recovers differently for both structures.
Some hundreds of nanometers behind the last air rod (Fig. 3.4 a ), the fundamental
mode (TE00) of the waveguide is recovered. The recovery of light behind the slits is
different compared to the air rods (as discussed above). In Fig. 3.4 b a non-periodic
intensity pattern is visible.

Intensity distribution simulations

The electric field around the periodic structures has been calculated as a function
of wavelength to allow direct comparison to the PSTM data. The two-dimensional
simulations are based on Maxwells equations in the frequency domain [80], [81].

In our PSTM measurements, TE polarised light was coupled into the structure.
As a result, we compare the measurement to only one component of the simulated
E-field. The simulation is performed for a cross-section through a waveguide con-
taining 15 slits. Figure 3.5 shows the | E⊥ |2 distribution of the simulation, since
E⊥ is perpendicular to the simulation plane and thus the E-field component most
comparable to our PSTM measurement. The image is presented in a logarithmic
gray scale, where bright means high intensity and dark represents low intensity.
Light (λ0 =632.8 nm) is launched from the left side and propagates to the right
side. The guiding Si3N4 (n =2.01) waveguide layer is 55 nm thick and located on
top of a 3.2µm thick layer SiO2 (n =1.45) supported by Si. The SiO2-Si interface
has an appreciable reflection coefficient for many wavelengths of light. For this
reason, a perfect mirror is chosen to mimic the physical buffer-substrate interface
in the simulations, which is realised by placing the artificial computational window
boundary at this position. The horizontal axis gives the relative position with re-
spect to the first slit. In front of the slit array, the standing wave pattern is clearly
present. At the position of the first slit, light is scattered mainly back into the
waveguide and into the SiO2 substrate. The light scattered into the substrate is
subsequently reflected at the Si-substrate located at -3.2µm. This scattered light
interferes behind the structure with guided light transmitted through the slits.

50



3.1 Local optical intensity distributions

H
e
ih

g
t 

 [
m

]
m

1

0

-1

-2

-3

-2 -1 0 1 2 3 4 5 6

probe position  [ m]m

Figure 3.5: Gray scale representation of the | E⊥ |2 distribution of a two-dimensional
simulation of a cross-section through a waveguide ridge containing 15 slits. | E⊥ | is the
E-field component perpendicular to the simulation plane. The geometry of the structure is
depicted with drawn lines. The incoming light propagates from left to right. The gray scale
scale on the right side gives the intensities in arbitrary units. The colour representation is
in logarithmic scale. On the left side, a standing wave in front of the slit array is visible.
Furthermore, light scatters from the first slit into the substrate. An interference pattern
is produced between propagating light in the guiding layer and reflected light from the
Si-substrate located at 3.2 µm.

To compare the simulations directly with the measurements, we plot in Fig. 3.6
| E⊥ |2 of a line located 10 nm above the waveguide. Again, the standing wave in
front of the slit array (indicated by the dotted rectangle) is clear. At the location
of the first slit, the highest intensity of the distribution is found. Inside the array a
decay in intensity is observed. Behind the 15 slits, a non-periodic recovery of light
in the waveguide is found. Two pronounced minima are found for this simulation
(marked by x1 and x2). Different simulations show that this non-periodic pattern
behind the slits changes as a function of thickness of the SiO2 buffer layer. For
example if the SiO2 layer is 10µm thick, the non-periodic interference pattern
becomes undetectable.

Comparison between measurements and simulations

We will compare the line traces obtained from the measurements for different
wavelength to the line traces from the simulations. The standing waves in front of
the periodic arrays have been compared already to calculations in table 3.2. For
this reason, we will focus here only on the optical patterns inside and behind the
arrays.
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Figure 3.6: Line trace of | E⊥ |2 taken from the simulation at a height of 10 nm above
the waveguide. Besides the standing wave, the experimentally observed exponential decay
of intensity inside the array is reproduced. Behind the slits, a non-periodic recovery is
found.

The period of the interference pattern inside the periodic structures is found
to be 220 nm for all wavelengths in both the measurements and the simulations.
The array consists of 15 periods and 15 intensity maxima located in the structure
are found. For different line traces measured for different wavelength λ0, we fitted
an exponential decay exp(-βx) through the maxima of intensity located inside the
periodic structure. The decay rate β is the free fit parameter and x is the probe
position with respect to the first air rod or slit.

Figure 3.7 depicts decay rates obtained from fits to the measurement data and
to the simulations plotted as a function of λ0. In the case of the 15 air rods, we
fitted an exponential decay through all 15 maxima located in the periodic array.
Comparison to the fits obtained with the simulations show good agreement in both
the wavelength dependence and the absolute values. Comparing the line trace of
the measurement on 15 slits (Fig. 3.4 b ) with the line trace the simulation (Fig. 3.6)
shows an apparent discrepancy at the location of the first slit. As explained in
section 3.1.1, a high intense peak at the first slit is measured and attributed to
scattering. A comparable peak is not clearly visible in the simulations. However,
the calculated | E⊥ |2 does show a circular pattern originating from the area of
the first slit indicating a scattered wave. Note that this scattered light is picked
up more readily by our near-field probe than the evanescent tails of | E⊥ |2 above
the rest of the structure. The measured intensity at the front of the structure
can therefore easily be greater (for equal calculated | E⊥ |2) than above the rest
of the structure, because the relative contribution of scattered light compared
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Figure 3.7: Measured and calculated decay rates of intensity inside the periodic array de-
termined for different wavelengths of light coupled into the waveguide. A good agreement
between measurement and simulation is found for both structures. A fit with exp(-βx)
was performed to line traces as shown in Fig. 3.4 a and 3.4 b. a) For the air rod array
structure all 15 maxima were used to perform a fit. b) For the slit structure only 13
maxima were used to perform the fitting to prevent the influence of the strong first peak.
Good agreement is found between measurement and simulation for both structures.

to evanescent fields is larger at that position. As a result, we neglect the first
and second peak for the comparison of the decay inside the structure. Thus, 13
maxima have been fitted from the measurements on the slit array and from the
simulations. Impedance mismatch occurs when light couples from the last air rod
or slit to the unperturbed ridge waveguide again. Because of the very low local
intensity the inclusion of the last peak makes no difference to the exponential fit.
Figure 3.7 b shows the decay rates found, again we compare them with decay rates
obtained from the simulations. From the exponential decay rate, we calculate
that the periodic structures have losses between 4.4 dB/µm and 11.4 dB/µm. The
decay is faster for shorter wavelength, which is typical for scattering phenomena
that generally increase with decreasing wavelength. We therefore attribute the
wavelength-dependent decay found in our periodic arrays to scattering on the air-
material interface.

As a next step we investigate the origin of the maxima and minima in the
recovery of light beyond the 15 slits. The Si layer, which lies at a position of
- 3.2 µm beneath the Si3N4 layer is approximated as a mirror in the simulations.
Light scattered into the SiO2 at the first slit gets reflected on the Si-substrate.
Interference takes place in the waveguide behind the slit structure with the light
that is directly transmitted by the slit structure. In Fig. 3.8 the distances ∆xi (see
Fig. 3.4 b and Fig. 3.6) between the minima occurring and the last slit position are
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Figure 3.8: Measured and calculated distance between final slit and minima in the recov-
ery pattern behind the periodic array, plotted as a function of wavelength. The recovery
of single mode behind the 15 slits involves a non-periodic intensity pattern. The distance
between the minima occurring and the last slit are plotted as a function of wavelength.
Good agreement is found between measurement (filled dots) and simulation (open circles).

plotted as a function of wavelength λ0. We find that for increasing wavelengths the
distance of the minima to the periodic structure decrease. Good agreement with
the simulation is found for the positions of the minima occurring over large ranges
behind the slits. As a result, the observation of this non-periodic interference
pattern behind the slits is a measure of the thickness of the SiO2 buffer layer.
Normally, layer thicknesses are globally determined by ellipsometry, whereas our
measurement tool reveals it locally. In contrast to the slits, the air rod structure
scatters a much smaller amount of light to the direction of the Si-substrate and
no oscillations in the recovery are found there. The observed scattering towards
lower substrate layers and subsequent reflections by those layers may have serious
consequences for optical circuits based on photonic crystals.

3.2 The phase evolution of scattered light and

singularities

In the first part of this section, we will present the phase measurements performed
on the 15 air rod structure. The measurement reveal interference effects as well as
local material properties. In the second part of this section, we demonstrate the
three-dimensional measurement mode of the photon scanning tunnelling micro-
scope. Phase singularities occur, when light with different wavevectors but equal
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3.2 The phase evolution of scattered light and singularities

optical frequencies, e.g., different waveguide modes, interferes destructively. The
shape evolution of a phase singularity is visualised as the relative contributions
of the interfering modes changes by altering the height of the probe. Finally, we
analyse the amplitude and the phase of light scattered from a waveguide by two
slits and show how to distinguish between guided and scattered light.

3.2.1 Interference around 15 air rods

Our photon scanning tunnelling microscope measures not only the optical ampli-
tude of light, but by using the heterodyne interferometric detection scheme the
phase evolution inside the photonic structure is visualised. From the measure-
ment, we obtain the cosine of the phase of light propagating through the structure
(Eq. 2.4). Figure 3.9 shows a map of the cosine of the phase of the light around the
15 air rod structure. The periodic air rod array is located in the centre of the im-
age. Light of λ0 =632.8 nm propagates from the top of the image to the bottom.
A wealth of different phase patterns is observed. The whole image contains all
the information of contributing modes, which have various wavevectors (different
spatial directions and different absolute values), even if they are leaky or scatter
out of the confining layer. In the upper half of Fig. 3.9 the optical wavefronts of
the fundamental waveguide mode are visible as flat phase fronts. With a Fourier
analysis, the period of the wavefronts is found to be 439± 4 nm, which corresponds
to the wavelength of light in the waveguide structure. Figure 3.9 also shows circu-
lar waves superimposed on the plane wavefronts. These circular waves have their
origin in the centre of the image, where the air rods are located. Scattering of
incoming light takes place at the air rod array and generation of circular waves
takes place. As discussed earlier, these circularly shaped waves contribute to the
change in modulation depth of the standing wave in front of the periodic array.

Due to interference between the incoming light and circular waves with origin
in the centre of the image, different phase patterns are produced. In the upper
part of the image we find jumps in the phase. They are a result of interference
of light that propagates in almost opposite directions (with a crossing angle close
to π) and their position changes parallel to the plane wavefronts during a single
oscillation of the optical field. In the lower part of the image phase singularities are
observed. They occur when different modes that propagate in the same direction
interfere. If the amplitudes of the contributing modes are equal, the modes are out
of phase and on the two different sides of this point a different mode has the highest
amplitude, then a singularity with zero optical amplitude occurs [82]. Integration
of the phase gradient around the position of a singularity results in an offset of the
phase value by ±2πn, where the integer n is the so called “topological charge” of
the singularity. The “topological charge” of all phase singularities observed in the
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light

Figure 3.9: The phase evolution of light propagating through the waveguide containing
15 air rods is visualised. In this image, the cosine of phase is depicted. The incoming light
propagates from top to bottom. We find circularly shaped waves as well as many phase
irregularities in the upper and lower part of the image (a number of which is indicated
by an arrow). Due to interference between counter-propagating light (upper part) or
co-propagating light (lower part), either phase jumps(upper part) or phase singularities
(lower part) occur. Image size: 9.33 µm× 17.23µm (horizontal× vertical).

lower part of Fig. 3.9 is either +1 or -1.
Figure 3.10 shows a measurement of only the air rod region. Simultaneously,

the topographical image (Fig. 3.10 a ) and the phase information (Fig. 3.10 b ) were
detected, while light of λ0 =632.8 nm was coupled into the structure. In front of
the air rods (top), the straight lines corresponding to phase fronts of the incoming
plane wave are visible. Inside the periodic array a distortion in the phase fronts
occurs (region indicated by the dashed oval). Careful investigation of Fig. 3.9 shows
the same distortions. This distortion from a straight wave front at the position of
the air rods indicates a local change of the refractive index of the material. We find
that the wavelength of light inside the periodic structure is 411±4 nm, whereas
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3.2 The phase evolution of scattered light and singularities

ba

Figure 3.10: Measurement of the nearby region around the air rods. a) Topographical
information, which clearly shows the 15 air rods in the waveguide ridge. b) Phase informa-
tion simultaneously obtained with the topography. The incoming light propagates from
top to bottom. On the whole, straight phase fronts with a periodicity of the wavelength of
light in the materials are visualised. In the air rod region, however, a perturbation of the
phase fronts is observed in the area indicated by the dashed oval. This indicates a local
change of the effective refractive index at the location where the air rods are introduced.
Image size: 5 µm× 4 µm.

the supported mode of the waveguide structure (in front of and beyond the air rod
array) has a wavelength of 439±4 nm (Fig 3.9). Thus, a shortening of wavelength
by 6 % takes place inside the air rod region. After 4µm, a shift of almost 200 nm
between phase fronts of light inside the air rod region in relation to phase fronts
of light that propagates left and right side along the air rods has developed. This
shortening in wavelength is remarkable. It implies an increase in the effective
refractive index, whereas a lower effective index of refraction was expected due
to the introduction of the air rods. Until now, no obvious explanation of this
wavelength shortening is found. Due to the periodic structure, the dispersion
relation can show regions with increased refractive index. We suggest that due
to such anomalous dispersion of light inside the array, a shortening in wavelength
takes place. To understand and confirm this assumption, further three-dimensional
calculations are needed.

To analyse the complex phase pattern of Fig. 3.9 in more detail, we performed
a two-dimensional Fourier transformation analysis. We considered the product
of the measured amplitude and the cosine of the phase as shown in Fig. 3.11 a.
Interference between incoming light and circularly scattered light is clear. Fur-
thermore, the intensity is mainly confined to the waveguide. Beyond the 15 air
rods, two beams scattering out of the waveguide are observed. In between these
two beams, an increasing amplitude due to the recovery of light to the waveguide
mode is clearly observed.
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Figure 3.11: Two-dimensional Fourier analysis of the scattering around 15 air rods.
a ) shows the original data: A· cosφ. b ) gives the spatial frequencies as given by the
intensity of the two-dimensional Fourier transformation of a ). For a detailed analysis, we
have separated the features found in the Fourier transform of b ). The three dominant
features are shown in d ), f ) and h ). To see the contributing details clearly, different
intensity normalisation was used for b ), d ), f ) and h ). Investigating those components
by Fourier back transformation untangles in all three cases plane waves, which propagate
under different angles. Figs. c ), e ) and g ) correspond to d ), f ) and h ), respectively. c )
shows plane waves under an angle of 0 degrees, which represent the incoming plane waves
propagating through the structure. e ) reveals plane waves propagating under an angle
of 15 degrees and g ) depicts plane waves propagating under an angle of 21 degrees. The
image sizes of a ), c ), e ) and g ) is 9.33 µm× 17.23 µm. Images b ), d ), f ), and h ) show
an area of 10.7µm−1× 11.6 µm−1.

In Fig. 3.11 b, shows the intensity of the two-dimensional fourier transform of
the original measurement presented in Fig. 3.11 a. A spatial frequency regions is
pronounced, which represent the directions of forward and backward propagation.
In addition, two concentric rings can be seen in Fig. 3.11 b. To investigate the de-
tails we use Fourier filtering, where different areas selected in the frequency domain
are used to reconstruct a fourier filtered image. We split the complex pattern of
Fig. 3.11 b into the three main contributions shown in Fig. 3.11 d, 3.11 f and 3.11 h.
The first component contributing to Fig 3.11 a is a plane wave (λ=439± 4 nm) over
the whole image shown in Fig. 3.11 c. Fig. 3.11 c is the fourier filtered image pro-
duced by using the selected area shown in Fig. 3.11 d. In the same way, Figs. 3.11 e
and 3.11 g are produced by inverse Fourier transformation of Figs. 3.11 f and 3.11 h,
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3.2 The phase evolution of scattered light and singularities

respectively. Figures 3.11 e and 3.11 f show plane waves propagating under discrete
angles away from the centre of the image. We find for the waves shown in Fig. 3.11 e
an angle of 15◦ compared to the top-down propagation direction. From the spatial
frequency found in Fig. 3.11 f, we calculate an effective refractive index of these
waves of 1.20 (corresponding to a wavelength λscattered =527 nm). Figure 3.11 g
shows plane waves of a refractive index of 0.90 (corresponding to a wavelength
λscattered =703 nm), which propagate under an angle of 21.5◦. Comparing the re-
fractive indices found for the plane waves with the refractive indices of leaky modes
of the slab gives a reasonable match (some leaky slab modes: TE07: neff =1.233,
TE10: neff = 0.980).

3.2.2 Shape evolution of a phase singularity in space

In the previous section, we have demonstrated how interference of propagating
waves builds up a complex phase pattern. On different locations, so-called phase
jumps and phase singularities were observed. Using the three-dimensional mea-
surement mode, we now investigate the shape evolution of such phase patterns as a
function of distance to the surface. While increasing the tip to sample separation,
the ration between the amplitudes of the contributing changes.
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Figure 3.12: Mode profiles of the supported waveguide modes. The relative amplitudes
between the modes are 0.53 for TE00, 0.93 for TE01 and 1.00 for TM00. This combination
of mode amplitudes is used for Figs. 3.13 c and 3.13 d.

To produce a phase singularity in a controlled way, we use a ridge waveguide
structure that supports different modes. The waveguide ridge has a height of 4 nm
and is 3µm wide. A slab layer of 110± 5 nm thickness surrounds the waveguide
ridge. The mode profiles of the supported TE00, TE01 and TM00 modes in the
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Chapter 3. Light scattering of sub-wavelength dielectric structures

waveguide are depicted in Fig. 3.12. From these profiles we determine the full width
at half maximum (FWHM) of the modes. In addition, we calculate the effective
refractive index neff of the modes [79]. The decay lengths into air (z-direction) is
calculated with

κ =

√
1

εeff − εair
· λ0

2π
. (3.2)

The values obtained for the supported waveguide modes are summarised in tabel 3.3.

mode neff κ [nm] FWHM [µm]
TE00 1.6162 79.82 2.61± 0.08
TE01 1.6109 80.64 3.91± 0.1
TM00 1.4713 93.47 3.20± 0.08
TM01 1.4682 93.69 21.31± 0.1

Table 3.3: Specification of the supported waveguide modes. The first column gives the
effective index neff of the modes. The second column gives the decay length κ of the
evanescent field away from the waveguide surface into air. The third column gives the full
width at half maximum (FWHM) of the different modal field distributions, determined
from calculated mode profiles.

A phase singularity occurs at the position where two modes have equal am-
plitude and are 180◦ out of phase. Destructive interference between these modes
occurs and when on either side of that position different modes have the highest
amplitude. Such phase singularities have been observed and described earlier [82].
The field components of TE and TM polarised modes are perpendicular and there-
fore decoupled. As a result, interference only takes place between modes of the
same polarisation. However, we observe interference between TE and TM po-
larised light. Interference occurs not in the waveguide itself, but due to mixing
of the field components while picking up the light with the near-field probe. This
interference has been called “quasi-interference” [83].

The mixing of polarisation is a useful side effect which enables to distinguish
directly which modes are present in the waveguide. Note that, interference between
modes of the same polarisation as observed in section 3.2.1 is real and takes place
in the waveguide structure itself.

Mode beating between three different modes (TE00, TE01 and TM00) is shown
in Fig. 3.13. The PSTM measurements are performed with light of λ0 =632.8 nm.
Figure 3.13 a shows the optical amplitude of light propagating from left to right.
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3.2 The phase evolution of scattered light and singularities

The phase information is depicted in Fig. 3.13 b. Clearly, phase singularities are
observed at locations where the amplitude of the field is zero. In Fig. 3.13 c and
Fig. 3.13 d, calculations of the optical field and phase are depicted, respectively.
The calculations are based on interference of the contributing modes and reproduce
both the intensity pattern and the phase information.

a b

c d

Figure 3.13: Quasi-interference between a TE00, a TE01 and a TM00 mode. a ) and
c ) show the measured and calculated local amplitude, respectively. b ) and d ) show the
measured and calculated local cosine of the optical phase, respectively. Clearly, at the
position where the optical field is zero, a phase singularity is present (dashed circles).
Image size: 8.6 µm × 3.8 µm.

We will now focus on the singularity pointed out with a dashed circle in
Fig. 3.13 b and Fig. 3.13 d and investigate this singularity at different planes paral-
lel to the surface. Fig. 3.14 shows the measurements (top images) and simulations
(bottom images) at three different heights: z∼ 10 nm, z= 100 nm and z= 180 nm.
No visible changes in the shape of the phase singularity is observed as the tip
to sample separation increases. This observation is reproduced with calculations
based on the optical values given in table 3.3. The fact that the shape and po-
sition of the singularity does not change indicates that the relative ratio between
the amplitudes of the contributing modes hardly changes as a function of tip to
sample separation.
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z = 10nm z = 100nm z = 180nm

Figure 3.14: Evolution of phase singularity in space. The top images are measurement
and the bottom images represent calculations. The singularity does not change in shape
nor move in position, as the tip to sample separation increases. The calculation reproduces
the experiment. Image size: 4.0 µm× 1.5 µm.

Through a change in the incoupling of light to the waveguide, we are able
to excite a TM01 mode. This mode gives rise to a completely different interfer-
ence pattern and the development of a new phase singularity. Figure 3.15 shows
the measurements observed for different tip to sample separations ranging from
z= 10 nm to z = 180 nm. The relative amplitudes of the four contributing modes
change in such a way, that at a distance of z = 90 nm two phase singularities are
created.

3.2.3 Evanescent and scattered fields around two slits

The potential of three-dimensional imaging becomes apparent when investigating
a strongly scattering structure. Two slits have been milled by FIB in a waveguide
(geometry of the waveguide is the same as in sections 3.1). The width of the slits is
110 nm and the centre spacing is 220 nm. For our three-dimensional investigations,
we used light of a wavelength of λ0 = 632.8 nm.

Figure 3.16 shows the topographical image and the optical signal in the plane
perpendicular to the sample surface and along the waveguide axis. Light propa-
gates from left to right. In the topographical image (Fig. 3.16 b ), the two slits in
the centre of the scan range are clearly resolved. In the optical image in Fig. 3.16 b,
a standing wave is observed in front of the two slits (left side of the image). Inter-
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z = 80nmz = 10nm z = 90nm z = 100nm

z = 110nm z = 120nm z = 130nm z = 140nm

z = 150nm z = 160nm z = 170nm z = 180nm

Figure 3.15: Evolution of phase singularities for different heights above the surface.
Two singularities develop as the distance between probe and surface is about 100 nm.
Increasing the tip to sample distance, the singularities move in position away from each
other in opposite directions. They also change in shape at a distance around 160 nm.
Image size: 5.8 µm× 8.4 µm.

ference between incoming and reflected light at the slits builds up a standing wave
of periodicity of 216± 10 nm. Furthermore, the intensity of light in the waveguide
is visible up to 300 nm away from the waveguide. Four distinct beams emanating
from the two slits are apparent in the optical amplitude image. To determine the
scattering angles of these beams, the amplitude is measured along a circle with its
origin at the slits (indicated in Fig. 3.16 b). The angular amplitude distribution
has been determined for two different circle radii; r = 1.25µm and r= 0.25µm and
is depicted in Fig. 3.16 c. The angles are given with respect to the transmission
direction, which is chosen to be 0 ◦. For a radius r= 0.25µm, the amplitude distri-
bution is rather uniform. This can be expected, since the image is still dominated
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Figure 3.16: a) The measured topography in which the waveguide ridge and the two slits
are clearly recognised. b) The amplitude of the light above the two slits. The slits are
located at the centre of the drawn curve. This curve depicts a line of constant distance
to the slits. c) The amplitude as a function of the angle with respect to the propagation
direction for different distances to the centre of the slits (logarithmic scale). Four different
peaks in the scattered light can be distinguished. The image sizes in x-, y- and z-direction
are 4.3 µm, 6.0 µm and 1.5 µm, respectively.

by evanescent field components. For a larger radius, the scattered beams become
clearly recognisable. From the distribution, we find the scattering angles of the
distinct beams to be: 11 ◦, 61 ◦, 116 ◦ and 166 ◦.

Simultaneously with the optical signal, the phase information in all three di-
mensions was obtained. Figure 3.17 depicts three different planes of which the
orientations are given with respect to the x-, y- and z-axes. Fig. 3.17 a presents
the measurement in the x-y plane, which is the top view to the waveguide (z-
direction). In Figs. 3.17 a and 3.17 b, light propagates from the left to right. The
straight wavefronts are more pronounced inside the waveguide region, whereas
outside of the waveguide (top and bottom), the noise becomes dominant over the
signal. We determine the wavelength of the light inside the waveguide at different
positions. In front of the slits, a wavelength λTE00 =423± 17 nm is found and the
wavelength determined behind the slits is found to be λTE00 = 419± 17 nm, both in
good agreement with the wavelength of the fundamental mode (λTE00 =433 nm).
The dashed white lines indicate the axis, along which the other two image planes
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Figure 3.17: Different cuts through the measurement of cos(ϕ) on the waveguide with
two slits. a) cosine in the same plane as Fig. 3.16 b. b) the cosine of the phase measured
at the surface. The white lines indicate the positions of the planes shown in the other
figures. c) the cosine of the phase across the waveguide. The image sizes in x-, y- and
z-direction are 4.3 µm, 6.0 µm and 1.5 µm, respectively.

(Fig. 3.17 b and 3.17 c) are oriented. The image plane in Fig. 3.17 b is the same
as for the optical signal in Fig. 3.16 a. Again, we find straight lines away from the
waveguide, which are visible up to 300 nm. The evanescent field does not have a
real wavevector in the z-direction, but only an imaginary part. As a result, the
effective optical path length of the signal branch in the Mach-Zehnder interferome-
ter does not change as long as the evanescent waves dominate the pick up signal.
This is more clear in Fig. 3.17 c, where for a plane perpendicular to the waveguide
a straight wavefront is observed. At a height of roughly 900 nm, the phase fronts
of the scattered waves become dominant. The position of the two slits is roughly
in the centre of the image. We observe, that light scatters strongly out of the two
sub-wavelength slits and builds a roughly circular wave in the y-z plane. in front
of the slits we determine that the interference pattern has a period of 575± 45 nm.
After the slits, a shorter period of 453± 45 nm is observed. Figure 3.18 shows the
phase information in a plane at a tip to sample separation of ∼ 1.2 µm (indicated
by dashed, white line in Fig. 3.17 a ). Again, a difference in periodicity is found
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Figure 3.18: Cosine of the phase at a plane at roughly 1.2 µm above the surface. We
observe a larger periodicity of the wavefronts in front of the slits (upper part) than behind
the slits (lower part).

between the wavefronts in front of the slits and those behind.
Apparently, in front of the two slits, light is scattered into propagating waves

in air (λ0 =632.8 nm) dominates over evanescent contributions. Whereas behind
the slits, the scattered light is still dominated by interference with light inside the
waveguide, and therefore a shorter wavelength compared to λ0 is observed.

3.3 Conclusions

We have presented PSTM as a powerful technique for characterising complex pho-
tonic structures. Simultaneous with the topography, the optical field distribution
is mapped with a resolution of roughly 50 nm. A quantitative analysis of the in-
terference pattern in front of a single slit reveals a standing wave resulting from
the interference between incoming and backscattered light. Moreover, a Fourier
analysis indicates scattering into leaky modes.

Investigations on two different photonic structures (15 air rods and 15 slits
milled into the ridge of a conventional waveguide) are performed. From the opti-
cal intensity distribution measurement we find a wavelength-dependent exponen-
tial decay rate inside the periodic structures. A faster decay is found for shorter
wavelength. The wavelength dependence is therefore mainly attributed to losses
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arising from scattering processes. The scattering behaviour of the two structures
has been found to differ. For the air rod array, we find strong scattering into leaky
modes of the waveguide. This leads to a change in modulation depth of the stand-
ing wave close to the air rod array. The slit structure scatters more efficiently into
the SiO2 buffer layer, which leads to an unexpected interference pattern behind
the slits, causing a wavelength-dependent recovery behind. Simulations confirm
that at the first few slits much light is scattered into the SiO2 layer, which is sub-
sequently reflected at the SiO2-Si interface. As a result a non-periodic interference
pattern is observed behind the slit structure. This finding has implications for
photonic crystal structures based on silicon on insulator technology as it can lead
to unwanted crosstalk.

Our technique visualises both the amplitude and the phase of local fields inside
the structures. Investigation of the phase evolution of light scattered around the
15 air rods reveals circularly scattered waves with their origin in the air rod region.
Due to interference between these circularly scattered waves and light propagating
in the structure a network of phase jumps and phase singularities is built up.
Local observations of the phase around the air rods show a change of the effective
refractive index of the waveguide.

Using the three-dimensional measurement mode, we investigated the evolution
of the phase for increasing tip to sample separation. It is easily recognised, that
the phase should not change as a function of distance, when evanescent light is
measured. Singularities exemplify the phase behaviour resulting from interference
of different modes in a waveguide structure. Due to different exponential decay
lengths, the relatives amplitudes between the modes changes as a function of probe
to sample distance. As a result, the creation of a pair of singularities was observed.

On the example of two slits milled in a waveguide, we can distinguish scattered
light from guided (evanescent) light. Four distinct beams emanating from the slits
are seen in the optical field distribution. Light is scattered from the two slits and
circular waves are observed at horizontal planes above the waveguide.

All the detailed optical properties in and around sub-wavelength structures
can only be obtained with a near-field setup. We found information on local
light scattering and phase shifts, which would have remained hidden using far-
field methods. We anticipate that our technique will allow the mapping of wave
functions of local photon states inside one- or two-dimensional photonic crystals.

67



Chapter 3. Light scattering of sub-wavelength dielectric structures

68



Chapter 4

Coupling to resonant modes of 2D
photonic crystal slabs

Free-standing two-dimensional photonic crystals slabs are investigated by far-field
reflectivity measurements. The in-plane stopgap along the crystalline Γ - K direc-
tion is revealed directly. The technique is used to probe the coupling to resonant
modes of the photonic crystal slab by angle-dependent reflectivity spectra on the top
side of the slab. Sharp resonance features are observed in the spectra, which change
their position and shape as a function of incident angle. From the frequency at
which the resonances occur, the dispersion of the resonant modes is reconstructed.
We investigate in detail the line shapes of the resonance features, which are deter-
mined by interference of light propagating along different pathways. The line shape
analysis reveals a phase shift occurring in one of the pathways when k// is varied.
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Chapter 4. Coupling to resonant modes of 2D photonic crystal slabs

4.1 Far-field characterisation of a photonic

crystal slab

Far-field reflectivity spectra measurements enable a good characterisation of the
optical properties of a photonic crystal slab. By probing the in-plane reflectivity at
the end facet of the slab the stopgaps of the crystal are revealed. These stopgaps
are located in the guided mode regions, which are the modes found in the dispersion
relation below the light line. But by far-field methods not only these guided
mode properties can be probed. Angle-dependent reflectivity measurements (also
called specular reflectivity measurements) on top of the photonic crystal slab,
enable coupling to resonant modes. In the dispersion relation, the resonant modes
are located above the light line. From the spectral position of the resonances
observed, the band diagram above the light line is reconstructed directly from
the measurements. Overall, the two different reflectivity methods (in-plane and
angle-dependent) give a complete picture of the dispersion relation and describe
the optical properties of the photonic crystal slab.

In this chapter, we show both, in-plane and specular reflectivity spectra ob-
tained on a free-standing photonic crystal slab. Details of the photonic crystal
slab investigated here are given in section 1.2.2. The setup used was described in
section 2.2.2.

4.1.1 In-plane reflectivity spectra

The stopgap along the Γ - K crystalline direction is probed by in-plane reflectivity
spectra. Reflection in the plane of the crystal slab is measured by focussing white
light to a spot with a diameter of roughly 40µm at the endface of the membrane.
In this way, the reflected signal is increased sufficiently to measure. Due to the
focussing of the beam, a range of wavevectors is incident besides the wavevector
parallel to the Γ - K direction. The angular spread is ± 23.6◦, which is calculated
for light propagating in air. For light propagating in the crystal the angular spread
is ± 12.6◦ (see section 2.2.1). Due to the small angular spread different crystalline
directions are probed in the reflectivity spectra.

The measured reflectivity spectra obtained for two different polarisations of
incident light are shown in Fig. 4.1. The two different polarisations used are
TE (E-field in x-y plane) and TM (H-field in x-y plane), which probe for our
slab geometry the properties of the even and odd modes in the band structure,
respectively. The spectra were normalised to the spectra of the Xe-lamp, which
was obtained by reflection on a silver mirror. Afterwards, the maximum value
found in the spectral range was set equal to 1. Note that the reflectivity spectrum
for TM polarised light was approximately five times less intense than that for TE
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Figure 4.1: Reflectivity spectra obtained for light propagating in the photonic crystals
slab (x-y plane). Both spectra, for even and odd modes show ranges of frequencies where
strong reflection occurs. These ranges of frequencies are associated with stopgaps along
the Γ -K direction.

polarised light. The origin of the lower reflectivity of TM polarised light has not
been identified yet.

In the in-plane reflectivity spectra (Fig. 4.1), we find several reflection peaks
for TM polarised light. The strongest reflection peak range in frequency from 0.60
to 0.62 and has a FWHM of 4.4%. In the TE spectrum the a strongly reflected
frequency range is found from 0.46 and 0.55. We compare the measurements
with the calculations (section 1.1.2). The first row in table 4.1 gives the stopgap
range obtained at FWHM from the measurements. The second row summarises the
stopgaps along the Γ -K direction found in the simulations. Reasonable agreement
is obtained for both polarisations of incident light. For the measured gap of even
modes, the FWHM is 0.01 larger than predicted from the simulations. The use of
an objective for the measurements results in a spread of available wavevectors k//

measured calculated Γ -K
TE / even 0.46 - 0.55 0.45 - 0.53
TM / odd 0.60 - 0.62 0.57 - 0.61

Table 4.1: Comparison of measured and calculated stopgaps. The first column gives the
measured reflected range of frequencies for both, TE and TM polarised light. The second
column gives the values of the stopgaps along the Γ -K crystalline direction for both
polarisations of incident light obtained from the calculations in Fig. 1.4 and discussed in
section 1.2.2.
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Chapter 4. Coupling to resonant modes of 2D photonic crystal slabs

(as discussed above). These additional available wavevectors result in a broadening
of the gaps. However, the enlargement of the gap should take place at the red
shifted band edge and not at the blue shifted as observed in table 4.1. For the
stopgap in the odd modes a 0.02 smaller gap is found as well as a blue shift of the
measurements compared to the simulations. Assuming an overall blue shift of the
measurements compared to the simulations is present, we can corrected for such a
blue shift. As a result, the broadening of the stopgaps occurs at the low frequency
side. Such a blue shift can have different origins. A slightly smaller thickness of
the slab shifts the gap range to higher frequencies (blue shift). Similarly, a slightly
different refractive index of the Si3N4 shifts the gap. The thickness of the slab
as well as the index of the silicon-rich Si3N4 were determined experimentally and
used as direct input parameters of the simulations. A measured inaccuracy can
lead to the discrepancy between simulations and reflectivity measurements.

The slopes at the band edges are rather steep. Normally, fabrication imper-
fections, such as roughness of the material interfaces and slight variations in peri-
odicity, influence the steepness of the slope at the band edge. The measurements
in Fig. 4.1 shows, that the investigated photonic crystal slab produced by laser
interference lithography has a high homogeneity. Laser interference lithography
has high potential for the fabrication of high quality two-dimensional photonic
crystals.

4.1.2 Specular reflectivity spectra

In the band diagram of a photonic crystal slab (Fig. 1.4) three different kind of
modes are present: guided modes lying below the light line, resonant modes lying
above the light line and a continuum of air modes indicated by the gray area
above the light line. In angle-dependent reflectivity measurements coupling of
incident light to resonant modes can be investigated, since a resonance feature
appears in the spectra. Coupling to a guided modes is only possible, when both
the wavevector and the frequency of incoming light match those of the mode.

With our angle-dependent reflection setup spectra for incident angles between
Θ= 33◦ and Θ = 80◦ can be measured. A parallel beam of white light, with a
rectangular profile of 300µm× 2mm, is incident on the photonic crystal slab under
an angle Θ. The reflectivity spectra are detected at an angle −Θ. The large beam
size decreases diffraction effects.

Specular reflectivity spectra were obtained for both, TE and TM polarised
incident light and along the two different crystal directions Γ -K and Γ - M. Fig-
ures 4.2 and 4.3 depict the angle-dependent reflectivity spectra measured along the
crystal Γ - K direction for TE polarised light and TM polarised light, respectively.
The angle of incidence increases from top to bottom in both figures.
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Figure 4.2: Specular reflectivity spectra for TE polarised light measured along the crystal
direction Γ - K. Background modulations due to Fabry-Perot interference in the 3.2 µm air
gap underneath the photonic crystals slab are observed. Superimposed on this background,
sharp resonance features can be seen (indicated by gray areas). The resonance features
shift in position of wavelength as a function of the incident angle Θ.

The spectra show a background modulation upon which much narrower reso-
nance features are superimposed. The background modulations are stronger for
small incident angles Θ. They are Fabry-Perot fringes arising from reflections in
the air cavity of 3.2 µm in between the Si3N4 membrane and the Si-wafer. The
sharp features superimposed on the smooth background shift with increasing inci-
dent angle Θ upwards in wavelength by up to 81 nm. The features have different
line shapes, such as minima, maxima and dispersive line shape. A closer investi-
gation reveals that the features observed for TE polarised incident light (Fig. 4.2)
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Figure 4.3: Specular reflectivity spectra for TM polarised light measured along the crys-
talline direction Γ - K. Similar as in Fig. 4.2, a background modulation upon which sharp
resonance features are superimposed can be seen. The resonance features (indicated by
gray areas) shift in position of wavelength as a function of the incident angle Θ. Moreover,
the shape of the resonance features changes with angle.

are always minima, whereas the features observed for TM polarised incident light
(Fig. 4.3) exhibit all the possible dispersive line shapes. Measurements along the
Γ - M direction were also obtained for both polarisations. Qualitatively, these spec-
tra look similar to those shown in Fig. 4.2 and Fig. 4.3. For this reason, the raw
data is not presented here, but is included in the analysis.

On one-dimensional structures (e.g., [64], [84]) and on two-dimensional struc-
tures with square lattice (e.g., [65], [66]) or with triangular lattice (e.g., [85]),
resonance features similar to those depicted in Figs. 4.2 and 4.3 have been ob-
served. However, in all those measurements no difference in the shape of the
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4.1 Far-field characterisation of a photonic crystal slab

features related to the polarisation of the incident light was observed. Moreover,
the resonant features observed in our study are narrower than those observed in
previous studies. The width of the resonances depends on the vertical confinement
of the mode, as confirmed by simulations [64]. A strongly confined mode shows a
narrower resonance than a weakly confined mode. For this reason, the observation
of narrow features indicate that our structures have a high confinement of the
modes due to the symmetric layer system and that little scattering occurs thanks
to the long range perfect order in our crystal. The large area of our freestand-
ing membrane gives rise to a high angular resolution in the reflectivity spectra.
Note that the narrow features are directly broadened by a detection system with
a limited angular resolution, since then averaging over different angles takes place.
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Figure 4.4: Reconstructed dispersion of the resonant modes. The spectral position of
the observed resonance features was determined by fitting the line shape of the resonance.
a ) represents the even modes (open triangles) and b ) the odd modes (filled dots). The
results are in perfect agreement with the band diagram calculations, depicted as open and
filled circles.

The spectral position of the resonances in reflectivity spectra is determined
by a fit of the resonance line shape, which will be discussed in the next section.
In principle, the position of the resonances could also be determined manually.
Here, we use the resonance frequencies obtained from the fit to reconstruct the
dispersion of the resonant modes using Eq. 2.6 since this is more accurate. In
Figures. 4.4 and 4.5 the dispersion relations along the crystalline directions Γ -
M and Γ - K are depicted, respectively. The dispersion relation obtained from the
specular reflectivity spectra are plotted together with dispersion obtained from the
band diagram calculations in section 1.1.2. Figs. 4.4 a and 4.5 a represent the even
modes corresponding to TE polarised incident light (open symbols). Figs. 4.4 b
and 4.5 b represent the odd modes corresponding to TM polarised incident light
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Figure 4.5: Reconstructed dispersion of the resonant modes. The spectral position of
the observed resonance features was determined by fitting the line shape of the resonance.
a ) represents the even modes (open symbols) and b ) the odd modes (filled symbols).
For both polarisations, two modes perfectly match two calculated modes (open and filled
circles), whereas two additional modes are observed in the measurements, which are not
explained by the calculations. We refer to the modes as first order (triangles), second
order (squares), third order (inverted triangles) and fourth order (pentagon).

(filled symbols). We find perfect agreement between measurements and simulations
in the dispersion along the Γ - M direction. For the measurements along the Γ -K
direction in Fig. 4.5 we find four different dispersion bands from the measurements.
From these four bands, two are predicted theoretically for each polarisation, i.e. the
first and second band for even modes and the third and fourth band for odd modes.
It turns out, that the four different modes observed for both polarisations are the
same, which becomes obvious, when the results of Fig. 4.5 are plotted together
in one graph (see Fig. 4.6). This overlap is due to polarisation mixing which
was observed earlier by [64]. It has been suggested [64] that higher order bands
contain high momentum guided waves due to the folding into the first Brillouin
zone. Mode mixing occurs when low momentum unfolded components are mixed
into this high momentum by the patterning of the photonic crystal. As a result,
the mode appears with opposite polarisation to the general character of the band.
The observation of mode mixing points out an important discrepancy between
measurements and simulations.
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Figure 4.6: Reconstructed dispersion relations of the resonant modes obtained in the
specular reflectivity spectra plotted together with the band structure calculation. The
open symbols represent the measurements of even bands and the filled symbols the mea-
surements of odd bands. The calculation is represented by open and filled circles. We
observe mode mixing between even and odd modes.

4.2 Analysis of coupling to resonant modes

4.2.1 Theory of Fano line shapes

The sharp resonance features observed in the specular reflectivity spectra (Figs. 4.2
and 4.3) exhibit all the properties of dispersive line shapes as described by Fano
[86]. Here, we will use the formula proposed by Fano to investigate the coupling
of continuum states to the discrete resonant modes of the photonic crystal slab.

In 1961 a theoretical description for resonances that occur in the spectra of
inelastic scattering of electrons on Helium was presented [86]. In that case, an
electron-beam, represented by a continuum of initial states ψ, is scattered inelasti-
cally by a Helium atom. As a result, autoionisation of the Helium can occur or the
electrons scatter to an unperturbed continuum of states ΨE . The autoionisation
of the atom during the scattering produces a resonance in the detected electron
spectrum, which is explained by coupling of the initial electron states ψ to a dis-
crete resonant state φ. Such a resonance has a dispersive line shape that can be
described by

f(E) = 1 +
q2 − 1 + 4 q (E −Eψ − F )/Γ

1 + 4 (E −Eψ − F )2/Γ2
, (4.1)

where q is the coupling parameter and Γ the spectral width of the resonance. The
unperturbed energy level Eψ is shifted by a discrete energy F to the resonant state
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Chapter 4. Coupling to resonant modes of 2D photonic crystal slabs

φ. As a result, Eψ + F is the resonance energy level lying within the perturbed
continuum of states Φ. The coupling parameter q is given as the ratio of the
transition probabilities from an initial state ψ to the discrete resonant state φ and
to a band width Γ of unperturbed continuum states ΨE by

1
2

π q2 =
|〈φ |T |ψ〉|2

Γ · |〈ΨE |T |ψ〉|2 , (4.2)

where T a suitable transition operator. 〈φ |T |ψ〉 and 〈ΨE |T |ψ〉 are matrix ele-
ments of the transitions to the discrete resonant state and to continuum states,
respectively.

We translate this theory of inelastic electron scattering on atoms to the pho-
tonic case for the description of the excitation of the resonant modes observed
in our reflectivity spectra. We substitute E = ~ω and Γ = ~γ in equation 4.1.
Furthermore, we include some parameters to fit the measurement data properly.
We write

f(ω) = S · [1 +
q2 − 1 + 4q(ω − ω0)/γ

1 + 4(ω − ω0)2/γ2
]+ f0 + b · (ω − ω0) , (4.3)

where ω0 is the resonance frequency of the resonant mode, γ is the line width of
the resonance, q is the coupling parameter, S is the amplitude of the resonance
(a parameter that includes the coupling strength) and f0 is an offset of data. A
background of the data is given by the slope b · (ω − ω0). In our experiment
incoming white light describes the initial continuum of states ψ. The resonant
state φ is determined by the spectral position ω0, where the sharp features with
dispersive line shapes are observed. The detected spectral range of frequencies are
the unperturbed continuum states Ψ.

The line width γ of a mode corresponds directly to the lifetime of the mode.
Theoretically, a lossless, guided mode has an infinitely small line width γ. This
implies that the lifetime becomes infinite. Due to the leakage, resonant modes
have a finite lifetime. Moreover, we can relate the line width γ to a quality factor
Q of the mode,

Q =
ω0

γ
. (4.4)

It is obvious, that a perfectly guided mode has an infinite quality factor.
We illustrate the fitting procedure on two examples of resonant line shapes,

shown in Fig. 4.7. The reflectivity measurements for this examples were performed
along the crystalline Γ - K direction and at an incident angle of Θ= 75◦ (depicted as
black lines). The left graph shows the resonance observed for TE polarised incident
light and the right graph the resonance observed for TM polarised incident light.
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4.2 Analysis of coupling to resonant modes

Clearly, a minimum and a dispersive line shape are observed, respectively. The
gray lines give the fits obtained with formula 4.3. In both cases, the fit represents
the line shapes of the resonances accurately. We find for the minimum in the
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Figure 4.7: Two examples of resonance features obtained in measurements obtained for
TE (Fig. 4.2) and TM (Fig. 4.3) incident light at Θ = 75◦. The black line represents the
measured raw data. The gray line represents the fit obtained by equation 4.3. The fit
reproduces the experimental data well. The fit returns the following parameter for the
left graph: ω0 =0.547, γ =0.003 and q = 0.102. For the right graph we obtain: ω0 =0.635,
γ =0.002 and q = -1.122

left graph the resonance frequency at ω0 =0.547, the line width γ = 0.003 and a
coupling parameter of q = 0.102. For the resonance in the right graph, we obtain
a resonance frequency ω0 =0.635, a line width γ =0.002 and a coupling parameter
q= -1.122. From the two examples, we conclude that equation 4.3 is suitable to
fit the measured resonance features.

When two features occur at frequencies close to each other, see for example
the case in Fig. 4.3 for the resonances at 600 nm and at 620 nm, we use an adapted
function to fit. The sum of two resonances is used to fit those features. Figure 4.8
shows a double resonance feature, observed in the spectrum along the Γ -K di-
rection at an incident angle Θ= 75◦ and for TM polarised incident light. The
measurement is depicted as black line and the fit is shown as a gray line. We
obtain the following fit parameters for the first (left) and second (right) resonance:
ω0,1 = 0.549, ω0,2 =0.571, γ1 =0.006, γ2 =0.011, q1 = -22.115 and q2 =1.256. The
two resonance features are fitted suitable, even though care has to be taken for the
lower frequency one. The coupling parameter seems not to be realistic, which is
confirmed by this difference in line shape at the left side of the resonance. Note,
that two resonance features close to each other may only be fitted by the func-
tion proposed by Fano, if the resonances do not interact with each other [87].
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As a result, our adopted fit function, which consists of the sum of two resonance
line shapes, provides a good approximation to the measurements as long as the
resonances do not interact.
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Figure 4.8: Reflectivity as a function of normalised frequency. The black line depicts
the reflectivity measurement along Γ -K obtained for TM polarised light with an incident
angle Θ =75◦ as a function of normalised frequency. The gray line gives the best “double
feature” fit. The parameters found from the fit are: ω0,1 = 0.549, ω0,2 = 0.571, γ1 =0.006,
γ2 =0.011, q1 =-22.115 and q2 =1.256.

The function proposed for the analysis of resonances in the energy spectra of
electrons is translated to the photonic case. To analyse the observed resonance
features in the specular reflectivity spectra, we fit them with either the function 4.3
or an adapted “double feature” fit.

4.2.2 Lifetime of resonant modes and q-reversal

From the fits performed for each resonance found in the specular reflectivity spec-
tra along the Γ -M and Γ - K directions of the crystal for both polarisations, we
obtained the parameters ω0, γ and q, which are the resonance frequency, the line
width of the resonance and the coupling parameter, respectively. With Eq. 2.6,
the dispersion of the resonant modes has been reconstructed and shown in sec-
tion 4.1.2. Excellent agreement with the simulation is obtained. In this section,
we will discuss the results of the line width γ and the couplings parameter q.

The line widths of the even and odd resonant modes along the crystalline
direction Γ - M are depicted in Fig. 4.9. We find for both modes no clear wave-
length dependence of the line width. The average line width for the even modes
is approximately γ =0.005 and for the odd modes roughly γ =0.001.
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Figure 4.9: Line width γ obtained from the measurements performed along the crystalline
Γ - M direction. The left graph (open symbols) presents the even modes and the right graph
(filled symbols) the odd modes. The line width shows no clear dependence on wavevector.

We calculate the quality factor Q (Eq. 4.2) of the resonances along Γ - M. We
find for even modes a range from 81 to 172 and for odd modes from 214 to 1014. As
predicted theoretically (e.g., [88], [63]) resonant modes can have quality factors up
to 103 or even up to 105 (see [89], [90]). The combination of the high confinement
of the modes in our symmetric slab structure and the high angular resolution of
the measurements allow the theoretical prediction to be reached. Apparently, the
quality of the photonic crystal structure is also high.

For the measurements along the Γ - K direction, we observed several resonant
modes. To ease the discussion of the line width, they are presented in three sub-
graphs (Fig. 4.10): one for the lowest resonant mode, one for the second resonant
mode and a third subgraph for the third and fourth resonant modes together. For
the higher order modes, the width of the resonances does not exhibit a clear de-
pendence on wavevector. We find that γ is slightly wider for the second band as
compared to the third and fourth band. For the lowest band we observe a changes
in the line width in the Γ - K direction for both polarisation. For decreasing angle
of incidence (corresponding to a decreasing value of the wavevector k) down to
approximately Θ= 50◦ to 55◦ the line width of the resonances increases. For an-
gles smaller than Θ =50◦ (corresponding to k// =0.45), the width of the resonance
stays constant.

Again, we calculate the quality factor Q corresponding to the line width γ.
The first bands shows quality factors for even and odd modes, ranging from 81 to
214 and from 21 to 103, respectively. For the second bands we find quality factors
for even modes in the range between 102 and 139 and for odd modes between 53
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Figure 4.10: The left (open symbols) and right (filled symbols) graph depict the line
widths determined from the measurements along the Γ - K direction and for TE and TM
polarised light, respectively. The first resonant mode shows an angle dependence of the
line width, whereas the higher order modes not. Moreover, the higher the mode is the
smaller the line width becomes. The dashed lines act as guides to the eye.

and 87. The quality factor for the third and fourth band of the even modes is
found in the order of 177 to 530 and for the odd modes between 265 and 576.
From the quality factors obtained, we conclude that modes in higher order bands
couple less to the continuum than the lower order bands.

The last parameter obtained from the fit with equation 4.3 is the coupling
parameter q. Figure 4.11 and Fig. 4.12 show the coupling parameter for the two
crystalline directions Γ - M and Γ - K, respectively. Again, the graphs with open
symbols represent the even modes and the graphs with the filled symbols corre-
spond to odd modes. For all measurements obtained with TE polarised incident
light, we observe that the value of q varies around zero corresponding to the ob-
servation of a minimum in the reflectivity spectra. We attribute the fact that in
our measurements for TE polarised incident light only minima occur and no dis-
persive line shapes to the symmetry (in the z-direction) of our structures. Most
measurements reported in the literature were performed on asymmetric structures
and no polarisation dependence of the shape of the resonant modes was found.

However, for the TM polarised light a significantly different behaviour of the
coupling parameter is observed. Figure 4.11 shows that the coupling parameter
actually changes its sign from a value around +1 to a value around -1 with in-
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Figure 4.11: Coupling parameter q for the measurements along the crystallin direction
Γ - M. For the even modes (left graph), the values of q are around zero, which corresponds
to a minima in the spectra. For odd modes (right graph), we observe that the phase of
the coupling parameter q changes at k// = 0.516.

creasing angle of incidence Θ (increasing wavevector k). At an angle of incidence
of Θ = 65◦ (corresponding to k// =0.516) the coupling constant q has a very large
value.

Figure 4.12 shows the coupling parameters determined from the measurements
performed along the Γ -K direction. For the measurements with TE polarised inci-
dent light (left graphs), no large variations in the coupling parameter q is observed.
The values of q is small (q< 0.45) for all wavevectors. A similar wavevector de-
pendence of q is observed for the third odd band (right graph). However, for the
second and fourth band of the odd modes, the q - reversal observed in the Γ - M
direction is also detected along the Γ - K direction.

For the measurement with TM polarised light along the Γ -K direction the cou-
pling parameters determined for the second, third and fourth band are presented in
Fig. 4.12 on the right side. The fit for the first band produced large error margins
and is for this reason not suitable to be analysed. As mentioned previously, our
fit procedure is based on the assumption that the two resonances do not interact.
We therefore suggest, that the inaccurate fit is a result of the interaction between
the two resonant modes observed. In the second band the coupling parameter q
is positive for large incident angle and becomes negative for angles smaller than
Θ= 60◦ (corresponding to k// =0.505). For the fourth resonant band we see that
for small incident angle a positive coupling parameter is observed (around +1) and
for incident angles larger than Θ= 65◦ (corresponding to k// =0.582) a negative
value for q is found.
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Figure 4.12: The coupling parameter for the different bands is shown. For the measure-
ments obtained with TE polarised light, the values of q are around zero for all four bands,
as can be seen in the left graphs. For the measurements obtained with TM polarised light,
we observe a change of the coupling parameter.

The line shape of the resonances is associated to interference of light, that
propagates along two different pathways. As a result, the q-reversal observed has
to be sought in the nature of the interference. The square value of the coupling
parameter q is defined as a ratio of transition probability (Eq. 4.2).

However, q also has a sign that reflects how the phase difference between the
two pathways changes as the resonance frequency ω0 is traversed. Here, the two
pathways that can be identified are reflected via the discrete resonant modes (φ)
and a direct reflection where in principle a continuum of states (ΨE) is available.
The observed q - reversal via a large q value therefore indicates an overall phase
shift of π between the two pathways. The large q values observed for certain
wavevectors indicates that for those wavevectors the matrix element 〈ΨE |T |ψ〉
becomes small. Here, we suggest an explanation for the q - reversal based on the
transission probability alone. Hereto we postulate that the photonic crystal slab
actually has a Brewster angle

ΘBrewster = arctan(
neff

nair
) , (4.5)
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determined by an effective refractive index neff . With the effective refractive index
neff = 1.83, calculated in section 1.2.2 of the two-dimensional photonic crystal slab,
we find a Brewster angle at ΘBrewster =61.2 ◦.

By traversing the Brewster angle, the phase of the reflected TM polarised light
changes by π. At the Brewster angle, the reflection of TM polarised light is zero.
For TE polarised light, the phase remains the same for all angles of incidence.
The value of 61.2◦ agrees reasonably well with the angle for which the high q’s are
found. Above and below this angle, the phase of 〈ΨE |T |ψ〉 changes by π. In this
explanation for the q-reversal we have assumed that the phase in the interference
path via the resonant mode stays constant. Although the experimental accuracy is
insufficient for real proof, the constant quality factors Q as a function of wavevector
suggests a constant confinement time in the discrete mode.

Note that, in the field of molecule physics, e.g., autoionisation and molecular
predissociation, q-reversal has also been observed [87]. In the photonic case, q-
reversal in the form as shown here, where a discrete transition region is present,
has not been reported before.

4.3 Conclusions

Far-field investigations have been performed on large photonic crystal slabs that
is suspended in air. In-plane reflectivity measurements reveal a large TE stopgap
along the crystalline Γ -K direction. For the odd modes (TM polarised light), also
a stopgap is found. The measurements are in good agreement with the simulations.
This suggests that the photonic crystal slab will also have the photonic bandgap
for even modes, as predicted by the simulations.

The coupling of incident light to resonant modes of the crystal was observed
in specular reflectivity measurements. From the resonance frequency, part of the
dispersion relation directly is reconstructed and found to be in excellent agreement
with simulations. Moreover, polarisation mixing between even and odd modes is
observed in the spectra obtained along the crystalline Γ - K direction.

The line shapes of the resonance features is analysed in detail. For the fit, we
adopted a function analogue to the one proposed in 1961 for resonances occurring
in the energy spectra of electrons. From the line shape fit we obtain next to the
resonance frequency two additional parameters, the line width γ of the resonance
and the coupling parameter q. We find that the line width of the observed reso-
nances are extremely narrow corresponding to high quality factors of the resonant
modes. Two possible effects allow these observations. Firstly, our structures are
symmetric and show a high confinement of the guided modes to the slab. Secondly,
the angular resolution of our measurement setup is high, which avoids averaging
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Chapter 4. Coupling to resonant modes of 2D photonic crystal slabs

of spectra obtained over an small angular range.
We observe a so-called q-reversal of the coupling parameter q for several modes.

We suggest a the existence of a Brewster angle of the photonic crystal slab based on
its effective medium index of refraction. This angle determines at which wavevec-
tors the q-reversal occurs.

By combining in-plane and angle-dependent reflectivity measurements, a large
fraction of the dispersion relation of the photonic crystal slab is probed. In this
way, a solid understanding of the optical properties of the crystal is provided.

We have also performed near-field measurements on the two-dimensional pho-
tonic crystal slabs. However, the 100µm wide membrane turned out to vibrate
such that no reproducible results were achieved. Currently, PSTM investigations
on similar membranes of 20µm and 50µm width are in progress. Moreover, first
results on slightly different two-dimensional photonic crystals [91] were achieved.
There, we visualised the coupling of light in coupled cavities in a two-dimensional
photonic crystal. The preliminary results reveal the local coupling efficiency for
frequencies at cavity resonance and of resonance. Such PSTM measurements al-
low, e.g., visualising the mode distribution of a cavity mode. Moreover, with
our PSTM we can visualise propagating light pulses provided by a femtosecond
laser [92]. Such investigations will reveal the local effect of the crystal on the
different spectral components of light.
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Chapter 5

Near-field optical transfer through 3D
photonic crystals

Using a near-field microscope in illumination mode, light is coupled to a three-
dimensional photonic crystal. The light transfer from the near-field source to the
crystal and subsequent propagation is measured as a function of position and optical
frequency. We investigate thick polystyrene opals with many different sphere sizes.
Performing approach experiments allows the contribution of far-field and near-field
components to be distinguished. In addition, we observe that defects in the <111>
crystalline surface affect the coupling of light.
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5.1 Introduction

Photonic crystals are rarely considered as the complex optical structures they
are; their complete description should take into account not only far-field but
also near-field properties [93]. So far, two main approaches have been utilised to
probe the optical properties of photonic crystals. The first and by far the most
extensively used has been transmission or reflection experiments in which both
source and detector are in the far-field, see e.g., [8], [94]. These far-field methods
have been successfully used to determine stopgaps or the mean free paths, and
to elucidate the propagation of ultrafast pulses. Secondly, far-field measurements
of spontaneous emission rates of sources embedded inside the crystals probe the
so-called local density of states (LDOS) [5], [6]. The LDOS contains both far-
and near-field components, and gives rise to modified quantum electrodynamics
including inhibited or enhanced emission [95], [96]. In both approaches, the optical
properties are spatially averaged by virtue of the detector being in the far-field.
Even if focussed beams are used [97], [98] diffraction still limits the obtainable
spatial resolution.

We present a new method to probe the near-field properties of three-dimensional
photonic crystals. We investigate artificial opals of five different sphere sizes:
r= 120 nm, r = 129 nm, r = 180 nm, r = 213 nm and r =241 nm (see section 1.2.3)
with a NSOM in illumination mode. The sub-wavelength light source near the
surface of the crystal launches light into the crystal. By scanning the position of
the light source relative to the crystal surface, we measure the amount of light that
reaches the other side of the crystal as a function of the launch position. With
a resolution superior to the above mentioned techniques, we observe spatial vari-
ations in the amount of light launched into the crystals on length scales smaller
than a unit cell.

5.2 Far-field reflectivity on opals

Using far-field reflectivity measurement (section 2.2.1), the exact location of the
Γ - L stopgaps are determined, e.g., the stopgaps along the crystalline direction
perpendicular to the <111> surface. Figure 5.1 shows a reflectivity spectrum for
the opal with spheres of r = 241 nm. The detected wavelength range is given in
the corresponding dimensionless frequency, where a is the fcc lattice parameter
and the frequency is given by ω = a/λ0. Since the material properties and the
volume fraction are the same for crystals of different sphere sizes, the optical
characteristics of the crystals, i.e., the stopgap positions, are related through a
simple scaling behaviour. As a result, the reflectivity spectrum depicted in Fig. 5.1
is representative for the crystals of different sphere sizes used in this chapter.
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Figure 5.1: Reflectivity measurement on the r = 241 nm polystyrene opal. The dimension-
less frequency (x-axis) is given by ω = a/λ0, where the cubic lattice parameter is a =

√
8 · r.

The first order Bragg diffraction is centred at ω =0.61. A second order Bragg diffraction
peak is found at ω = 1.13.

A strong first order Bragg diffraction is found at ω = 0.61± 0.02. The full
width at half maximum (FWHM) of this reflection peak ranges from 0.58 to 0.63,
which corresponds to a 8 % wide stopgap. A second reflectivity peak is found at
ω =1.13± 0.02. This peak ranges from 1.12 to 1.15 at the FWHM. In section 1.1.3,
a first order Γ - L stopgap ranging from 0.58 to 0.62 was found in the calculations.
This is in perfect agreement with our experiments. In addition, the range of second
order Bragg diffraction along the Γ - L direction was determined from 1.13 to 1.24.
As a result, the observed reflection peak around ω =1.13 is at the low frequency
edge of a possible second order stopgap region.

Spectra have been measured for the different sphere size crystals. The obtained
spectra are qualitatively similar to Fig. 5.1. We determined the centre wavelength
of the first and second order Bragg diffraction and plot them as a function of sphere
radius. Figure 5.2 shows the linear relation between sphere sizes and centre gap
wavelength. For larger sphere radius r the L-gap shifts to longer wavelength. To
determine the effective refractive index of the crystals, a linear fit was performed
for the first and for the second order Bragg diffraction peaks as follows. The Bragg
condition along the <111> crystalline direction (Γ - L direction) of a face centred
cubic lattice is equal to

m · λm
0 =

2√
3
· neff · a = sm · r , (5.1)

where a=
√

8 · r is the cubic lattice parameter, λm
0 the centre wavelength (in air)
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Figure 5.2: Wavelength of Bragg diffraction λm
0 versus sphere radius r. The effective

index can be determined from the slope. The second order Bragg diffraction shows, that
the effective index is not twice of the first order Bragg diffraction.

of the stopgap and m an integer value corresponding to the order of the diffraction
peak. We find a slope s1 =4.672± 0.018 for the first order Bragg diffraction and
s2/2 =2.503± 0.012 for the second order Bragg diffraction. From the fit through
the measured first order stopgap an effective index of refraction neff =1.43± 0.03
is calculated. This shows that Eq. 1.2 provides a good approximation to calcu-
late the effective refractive index (neff =1.46± 0.07). However, the fit through
the second order Bragg diffraction peak results in an effective refractive index of
neff = 1.53± 0.03. In other words, the second order diffraction does not correspond
to the order m=2, but rather to m=1.87, assuming the effective refractive in-
dex is neff =1.43. Such a discrepancy has been observed earlier for titania inverse
opals, and has been attributed to complex multiple Bragg diffraction coupling [99].
The reflectivity measurement provide an accurate determination of the effective
refractive index of the opals and of the first order Γ - L stopgap.

5.3 Position-dependent light transfer

Using the NSOM in illumination mode (section 2.1.3), we investigate the transfer
of light coming from the point-like light source through the crystal. The position-
dependent intensity data obtained in this way are the combined result of

1. the launching of the light from the fibre tip into the crystal,

2. the propagation of light through the crystal, and
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3. the exiting of the light from the crystal to the large detector.

It has been found that the mean free path of light diffusion in similar crystals
is about 15µm [100]. Since this length is much less than the sample thicknesses
of ∼ 200µm, we conclude that the propagation and exiting (points 2 and 3) are
randomised and are thus independent of the tip position. Therefore, the detailed
position-dependence that will be discussed in the following is caused by the launch-
ing of the light from the tip to the crystal (point 1).

The crystals are mounted on a 0.17 mm thick glass plate, which is positioned
on a photodiode. Light coming from the rear of the crystal passes the glass plate
and an air gap of several hundred microns between the glass plate and the detector.
The detector in this setup is effectively positioned in the far-field. For the near-
field measurements, the evanescent field of the probe is assumed to be constant for
different frequencies. In the experiment, light of an Ar / Kr laser is sent through
a λ/4 and λ/2 plate before it is coupled via an 0.32 NA (16×) objective into the
fibre with the near-field probe. The two waveplates are used to pre-polarise the
light in order to obtain circularly polarised light coming out of the near-field probe.
It has been established that the observed near-field patterns are independent of
experimental conditions like the near-field probe geometry and the height feedback.
The crystals are mounted such, that they present their <111> surface to the near-
field probe.

5.3.1 Frequency-dependent light transfer on big sphere
crystals

Crystals consisting of big spheres turned out to be more robust for scanning pur-
poses. For this reason, we start our investigations on large sphere size crystals and
perform the initial check of three-dimensional measurements, to determine the re-
liability of the near-field pattern. The crystal consisted of polystyrene spheres of
r= 241± 5 nm. The optical frequencies used are ω =1.33, 1.20 and 1.05, corre-
sponding to the laser wavelength λ0 =514 nm, 568 nm and 647 nm, respectively.
The near-field transfer is measured as a function of the relative position of the
sub-wavelength light source with respect to the unit cell of the crystal.

As a first step optical measurements are carried out at different (x,y)-planes
of constant heights above the surface (see three-dimensional measurement mode,
section 2.1.4). Figure 5.3 a shows the topographical information simultaneously
obtained with the measured transfer of light of λ0 =647 nm (Fig. 5.3 b ) in shear
force feedback measurement (z∼ 10± 5 nm). In the topographical image corruga-
tions of up to 85 nm are obtained. The high topographical resolution is a result of
a small Al grain located at the end face of the fibre probe. The grainy structure
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of the tip can be seen in the observed tip convolution in Fig. 5.3 a. The detected
optical signals for three different tip heights above the crystal are presented in
Fig. 5.3 c for z= 84± 30 nm, in Fig. 5.3 d for z= 446± 30 nm and in Fig. 5.3 e for
z= 723± 16 nm. In all four optical measurements, a hexagonal pattern of bright
intense spots is clearly observed and remains visible even for large tip to sam-
ple separation. This persistence of the optical pattern shows that the near-field
pattern in shear-force contact (Fig. 5.3 b ) is not influenced by the height feed-
back. We therefore exclude topographical artifacts [57]. The periodicity of the
optical pattern corresponds to the arrangement of the polystyrene spheres, which
is 2 r = 482 nm. Thus, in all images optical information is obtained on a scale that
is beyond the diffraction limit.

a b c

d e

Figure 5.3: Near-field measurements performed for different tip to sample separations.
a) Topographical image, the hexagonal arrangement of the polystyrene spheres in the
<111> surface of the crystal is visible. The apparent shape of the spheres is dominated
by tip convolution effects. b) Detected intensity as a function of x-y position, obtained
simultaneously with image a) at z∼ 10 nm. c), d) and e): Detected spatial intensity at
planes parallel to the <111> surface at z = 84 nm, z= 446 nm and z =723 nm, respectively.
The optical patterns show local information of the light transfer with sub-wavelength
resolution and the pattern persists for different tip to sample separations. Image sizes:
2.71 µm× 3.02µm.

A quantitative analysis of the measurements in Fig. 5.3 reveals that the optical
modulation M (see Eq. 3.1) decreases as a function of tip to sample separation
from 7% at a height of z∼ 10 nm to 4% at z∼ 723 nm. Furthermore, the average
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intensity of transmitted light through the crystals drops by 13% with increasing tip
to sample separation from z∼ 10 nm to z= 723 nm. We conclude that more light
is launched into the crystal when the tip is in the near-field regime than when it
is in the far-field regime. We recall, that a near-field probe provides both real and
imaginary wavevectors over an angular range of 2π solid angle (section 2.1.1). The
increase in throughput indicates that wavevectors within the forbidden angles are
coupled to the crystal, when the probe is in the near-field regime.

As a next step, we investigate the different frequencies near the second order L -
gap region. Figure 5.4 a shows the topography of the polystyrene crystal obtained
simultaneously with the optical information shown in Fig. 5.4 d. The topographi-
cal information obtained simultaneously with the other optical measurements is
identical to Fig. 5.4 a and for this reason not shown. The near-field patterns shown
in Figs. 5.4 b, 5.4 c and 5.4 d are obtained at ω =1.05, 1.20 and 1.33, respectively.
In all three measurements the hexagonal structure of the sphere arrangement with
period 2 r = 482 nm is clearly present. For all three different measurements more
light is detected when the tip is positioned on top of a sphere. Less light is detected
when the fibre probe is in between the spheres. While the images contain all the
information about launching light into the crystal, the propagation of this light
through and its exit from the crystal, the detailed features can be attributed to
the near-field launching into the crystal.

The measured near-field patterns change as the wavelength is varied. To elu-
cidate the changes in more detail, we summed up all unit cells found in the mea-
surement in Figs. 5.4 b, 5.4 c and 5.4 d and reconstructed an average unit cell for
each of the three measurements. Figures 5.4 e-h shows the area around one sphere
as obtained from the average unit cell. Figure 5.4 e shows the topography around
one sphere. Figures 5.4 f, 5.4 g and 5.4 h show the corresponding optical fields for
the three different frequencies. It is clearly seen that the position of the bright
spot shifts from the centre of a sphere at ω = 1.05 to one edge of the sphere
at ω = 1.33. It is remarkable that the three-fold symmetry around the <111>
crystalline direction is broken in Fig. 5.4 g and 5.4 h.

To investigate the shift of the bright intensity spots, we have performed cross
correlations between the different optical patterns of Figs. 5.4 b, 5.4 c and 5.4 d. As
a result, the shift of the bright spots can be determined for the different crystalline
directions. In table 5.3.1, the shifts observed along the crystalline <110> and
<101> directions are given. We observe, that the shift between ω =1.05 and
ω =1.33 along the < 110 > direction is larger than the shift observed between
ω =1.05 and ω =1.20 along the same crystalline axis. Along the <101> direction
the shifts observed for the two frequencies ω =1.20 and ω =1.33 with respect to
ω =1.05 are comparable.

As can be seen in Figs. 5.4 f, 5.4 g and 5.4 h, not only the position of the bright
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Figure 5.4: Position-dependent (x-y plane) transfer of light form tip to three-dimensional
photonic crystal obtained for different wavelength of light. a) Topographical information of
the <111> crystalline surface of the polystyrene crystal. b ), c ) and d ): Near-field optical
patterns at ω =1.05, 1.20 and 1.33, respectively. Image sizes: 2.28 µm× 2.53 µm. Images
e ), f ), g ) and h ) show the topography and the optical signals of a close up area around
one polystyrene sphere in more detail. The images are built up from an average unit cell
to pronounce the details of the original measurements. Image sizes: 0.65 µm× 0.72 µm.

spots shift, but also their shape changes as a function of frequency. Figure 5.5
depicts a line trace taken along the <1̄10> direction and through the centre of the
sphere from the rebuilt areas of Figs. 5.4 f, 5.4 g and 5.4 h. The size of the bright
intensity spots becomes smaller for shorter wavelengths. We measure the width
w of the bright spot to be w = 360± 20 nm at ω =1.05, whereas the width of the
spots at ω = 1.20 and ω =1.33 is w = 270± 20 nm.

crystalline ω =1.05 to ω =1.33 ω =1.05 to ω =1.20
direction ∆ [nm] ∆ [nm]
< 110 > 82± 6 72± 6
< 101 > 24± 9 23± 9

Table 5.1: Shifts of the bright intense spots along two different crystalline directions,
when the frequency is changed from ω =1.05 to ω = 1.33, middle column, and when the
frequency is changed from ω =1.05 to ω =1.20, right column.
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Figure 5.5: Line traces along the crystalline <110> direction from Figs. 5.4 f, 5.4 g
and 5.4 h. The shape of the optical pattern changes as a function of frequency. This
is elucidated by determining the width w of the bright spots, which is w= 360± 20 nm
at ω =1.05 and w = 270± 20 nm at ω =1.20 and at ω =1.33 for the <110> crystalline
direction.

To interpret the different optical patterns shown in Fig. 5.4, we recall that a
second order stopgap region is present from ω = 1.13 to 1.24. The three frequencies
measured are situated near this region. The frequency ω =1.05 is situated below
the second order stopgap. Therefore, light is launched into propagating modes that
have the same symmetry as the crystal, by virtue of Bloch’s theorem [21], [20]. The
frequencies ω =1.20 and 1.33 are both situated inside the second order stopgap
region. For frequencies in a stopgap, the light is not launched into propagating
Bloch modes, but in evanescent modes that do not match the crystal symmetry. As
a result, the intensity distribution does not have the symmetry of the underlying
crystals and the distribution shifts through the unit cell. This tentative explanation
is based on reasoning from dynamical diffraction theory for X-rays [101].

5.3.2 Near-field transfer on crystals of different sphere
sizes

In this section we study the position-dependent near-field transfer on crystals of
different sphere sizes. By using the laser wavelengths λ0 =514 nm, 530 nm, 568 nm
and 647 nm, a range of frequencies from 0.52 to 1.33 of the band diagram is probed.
We will discuss the results in the order of the sphere size of the opals by going
from large to small. In the previous section, investigations on the big sphere crystal
(r= 241 nm) have already been presented.
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a b

c d

Figure 5.6: Position-dependent near-field transfer on a polystyrene opal with sphere
radius r = 213 nm. a) Topographical information simultaneously obtained with the optical
image at ω = 1.14 depict in image d). Image b) and c) depict the optical information
obtained at ω =0.93 and at ω = 1.06, respectively. For all three frequencies, most light is
coupled through the crystal, when the fibre probe is positioned on top of a sphere. Image
sizes: 2.11 µm× 2.40µm.

Figure 5.6 shows the position-dependent near-field transfer obtained on an
opal with r = 213 nm. The measurements are performed at ω =0.931 (Fig. 5.6 b ),
ω =1.06 (Fig. 5.6 c ) and ω =1.14 (Fig. 5.6 d ), respectively. The topographical in-
formation shown in Fig. 5.6 a is obtained simultaneously with Fig. 5.6 d and shows
a hexagonal pattern of smooth spheres. Clearly, the hexagonal arrangement of the
spheres is recognised in the optical images (Figs. 5.6 b - d ). It can be seen that the
bright intensity spots are located on top of the spheres at all frequencies, similar
to Fig. 5.4 b. This observation agrees with our hypothesis, since the frequencies
correspond to propagating Bloch states with the symmetry of the crystal. For
the frequency ω =1.14 situated at the low frequency edge of the region of sec-
ond order stopgaps, no obvious changes amongst the optical pattern is found in
Fig. 5.6 d. The absence of a detectable shift is very likely, because this frequency
is barely in the stopgap region. Moreover, in an r= 213 nm crystal a shift should
be proportionally smaller than in a r= 241 nm crystal, thereby further reducing
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the likelihood to observe a pattern shift.
Similar measurements are obtained on the r = 180 nm sphere crystal at fre-

quencies ω =0.79, ω = 0.90 and ω =0.99. The near-field patterns observed re-
semble those shown in Fig. 5.6, as our hypothesis predicts, since the frequencies
correspond to propagating Bloch states with the symmetry of the crystal.

a b

c d

Figure 5.7: Position-dependent near-field transfer on a polystyrene opal with sphere
radius r = 129 nm. a) Topographical information simultaneously obtained with the optical
image at ω =0.56 depict in b ). c ) and d ) show the optical information obtained at
ω =0.64 and at ω =0.71, respectively. Most light is coupled through the crystal, when the
fibre probe is positioned in between the spheres. Image sizes: 1.41 µm× 1.33 µm.

With decreasing frequencies, we approach the first order Γ - L stopgap that
is centred at ω =0.60, as determined from the reflectivity measurements. Fig-
ure 5.7 shows the position -dependent near-field transfer on the r= 129 nm opal.
Fig. 5.7 a depicts the topographical information obtained simultaneously with the
optical measurement at ω =0.56 shown in Fig. 5.7 b. Figure 5.7 c and 5.7 d are ob-
tained for ω =0.64 and ω =0.71, respectively. A completely different optical field
distribution is encountered in these images compared to Fig. 5.6. Clearly, more
light is transmitted through the crystal when the fibre probe is positioned between
spheres. For the measurements on the r = 120 nm opal, the optical near-field trans-
fer pattern looks qualitatively similar to that obtained on the r = 129 nm opal. The
probed frequencies on the two small sphere size crystals are located around the first
order Γ - L stopgap. Our hypothesis based on dynamical X-ray diffraction theory
would predict an inversion of the near-field pattern at frequencies below compared
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to frequencies above a stopgap. The absence of such an inversion at the first order
Γ - L stopgap can be rationalised as follows: a near-field probe launches light under
the forbidden angles into the material. As a result, the fraction of wavevectors k,
which the tip launches in the Γ - L direction, can be relatively small. We suggest
that the available ratio between k vectors in the forbidden angles and k-vectors in
the allowed angles is in our experiment such, that the sensitivity becomes small for
the Γ - L direction and thus influences of the first order stopgap are not detected.

We find an inversion of the optical contrast in the near-field transfer patterns
between ω =0.71 and ω =0.79, that is, more light enters between the spheres
for ω < 0.71, while more light enters on the spheres for ω > 0.79. A tentative
explanation for the inversion of the intensity distribution is that in this frequency
range (0.7 - 0.79) many stopgaps are simultaneously present, i.e., at the U, K, and
W at the sixfold rim of the Brillouin zone (Fig. 1.5). Since a large fraction of
the modes launched by the tip are likely in these wavevectors (forbidden angles),
our experiment is sensitive to stopgaps in these k-points. Below and above the
stopgaps, the intensity distribution of Bloch modes has shifted from one spatial
distribution to its complement [102]. Such a shift of the intensity distribution is
exactly what we observe.

Note that in Fig. 5.7 contrast variations within the measurement area are
observed between different unit cells. Especially in the Fig. 5.7 b and 5.7 c brighter
and darker areas within the scan window are clearly visible. In the corresponding
topographical image no displacement of the spheres (i.e., in the z-direction) is
observed. We therefore attribute these variations to imperfections of the crystal
in some of the underlying layers. Since the mean free path for light in these
polystyrene opals is ∼ 15 µm [100], any changes in the first 15µm of the crystal
may influence the near-field transfer pattern directly. It is likely, however, that
these pronounced effects originate in the first few monolayers. This notable finding
shows that the NSOM is not only able to reveal local optical properties in two
dimensions of the incouple interface (x-, y-direction), but NSOM also probes deeper
underlying layers. In analogy, the scanning tunnelling microscopes (STM) have
already proven, that defects below the perfect surface can be sensed (see e.g., [103],
[104]).

5.3.3 Defects in the crystalline <111> surface

All measurements shown in the previous sections (5.3.1 and 5.3.2) have been per-
formed on perfect <111> surfaces. Such surfaces may contain various types of
defects, like edges of crystalline domains or missing spheres. In this section the
effect of a single surface defect, e.g., a polystyrene sphere missing in the <111>
surface, is investigated on the optical coupling.
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5.3 Position-dependent light transfer

w = 0.52 w = 0.56 w = 0.60 w = 0.64 w = 0.66

w = 0.71 w = 0.79 w = 0.90 w = 1.00

Figure 5.8: Position- light transfer on a crystal area containing a defect for different
normalised frequencies. For every frequency the measured topography (top), the optical
signal (middle) and the optical signal with a superimposed topographical contour map
(bottom) are given. The transmission and coupling of light from the near-field probe
positioned on top of the defect is strongly frequency-dependent. For a frequency located
at the stopgap (ω =0.61), less light is transmitted at the defect. For frequencies ω 6 0.66,
bright spots at the locations of the defects are clearly observed in the optical image. For
frequencies ω > 0.71, less light is coupled at the defect locations.
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Figure 5.8 shows measurements on polystyrene crystal <111> surfaces con-
taining different defects. The measurements are arranged according to the dimen-
sionless frequency ω at which they were measured. Three images are presented for
each frequency ω. The images on top show the topographical information mea-
sured simultaneously with the optical image shown in the middle. The images on
the bottom present a combination of the two upper ones. There, the topographical
information is given by a contour plot and is superimposed on the optical infor-
mation. In this way, the effect of the surface defect to the light transfer is more
easily recognised.

The observations on local coupling via defects is discussed starting with the
optical behaviour for small frequencies. At ω = 0.52 light was coupled via a “dimer-
defect”. We observe that for a tip position on the defect more light is transferred.
Even though the optical contrast is not excellent, a similar effect is observed at
ω =0.56. In this case a single missing sphere forms the defect. The frequency
ω =0.60 is located in the first order Γ - L stopgap. For this frequency less light is
transmitted via the “dimer defect”. For a frequency slightly above the stopgap,
ω =0.64, we again find an increase in intensity at the location of the defect. At
ω =0.66, the high transmission is very pronounced. For light at ω =0.71, less light
is coupled to the photonic crystal via the defect. For higher frequencies (ω =0.79,
ω =0.90 and ω =1.00), also less light is observed for a tip position on top of the
defect.

In summary, we find that the transmission through a defect depends strongly
on the frequency. We find a low transmission through a defect at the first order
Γ - L stopgap frequency. For frequencies ω 6 0.66, except frequencies in the stop-
gap, we find a high throughput at the defect. For frequencies ω > 0.71, less light
enters through defects. We note that the inversion of the optical near-field pattern
on the perfect crystal areas occurs at a slightly higher but different frequencies
(0.71<ω < 0.79), compared to the inversion in transmission through the defect
(0.66<ω < 0.71).

5.4 Approach curves

Moving the near-field probe in and out of contact while measuring the throughput
reveals additional information about the coupling of light from the tip in the
near-field regime of the crystal. We use the three-dimensional measurement setup
described in section 2.1.4. Instead of reconstructing different measurement planes
parallel or perpendicular to the sample, we will study the obtained approach curves
directly.
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5.4.1 Frequency-dependent approach curves on opals

We have performed approach measurements at different frequencies, using the
wavelengths λ0 =568 nm and 647 nm and different sphere size opals. In principle,
an approach curve can be measured at different positions in the unit cell of the
<111> surface. Here, only approach curves obtained on top of the spheres are
discussed, since they are qualitatively similar to those obtained at a tip position
in between spheres.

Figure 5.9 shows the obtained approach curves for six different frequencies,
to illustrate the important characteristics observed in all approach curves. The
x-axis of the graphs give the tip to sample separation, whereas the y-axis depicts
the throughput measured on the photodiode. Note, that this throughput is not
normalised to the intensity throughput of the tip. For this reason, the amount
of throughput in the different approach curves of Fig. 5.9 can not be compared
directly. Generally, we find a higher throughput in the near-field regime compared
to the throughput in the far-field regime. For different measurements, we observe
an increased near-field transfer intensity of up to 25 % more than the far-field
throughput. This decrease in signal with increasing probe to sample separation
has already been described in section 5.3.1. In all approach curves periodic fringes
are observed. These are Fabry-Perot fringes that occur in the air cavity between
tip and opal and the periodicity is exactly λ0 / 2. We find that the modulation of
the fringes is largest at ω =0.60. We associate this observation to a high reflectivity
of light, since the frequency used is situated in the Γ - L stopgap. Note that the
approach curves keep their general characteristics for all frequencies, independent
of whether the position-dependent near-field pattern showed a bright spot on top
of the spheres or whether more light was transferred in between the spheres.

Before we investigate the approach curves in more detail, we make a brief
excursion to approach curves on a homogeneous dielectric, i.e., a glass plate and we
introduce an intuitive picture to understand the difference of the coupling of near-
field components of light and the coupling of far-field components of light. The
excursion should help to understand qualitatively the contributing mechanisms,
which play a role in the approach curves obtained on the opals. Afterwards, we
provide a complete analysis on the approach curves obtained on the opals.

5.4.2 Experiments on a glass plate

Approach curves have been measured on a simple glass plate of 0.17 mm thickness.
The glass plate is mounted directly on the detector similar as in the measurements
on the opals. Figure 5.10 depicts approach curves on the glass plate performed for
λ0 =647 nm, 568 nm and 530 nm, respectively. We find Fabry-Perot fringes with a
periodicity of λ0/2 due to an air cavity between tip end face and glass plate. The
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Figure 5.9: Approach curves measured at different optical frequencies. The general
character of all approach curves shows an increase in throughput for a small tip to crystal
separation. Furthermore, in all approach curves Fabry-Perot fringes are observed resulting
from the air cavity between tip and opal. For the frequency situated in the first order Γ - L
stopgap (ω = 0.60), a larger modulation depth of the Fabry-Perot fringes is observed.
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Figure 5.10: Approach curves on a glass plate for λ0 =647 nm, λ0 =568 nm and
λ0 =530 nm, respectively. In the near-field regime, a decrease in transmission compared to
the far-field regime is observed. Furthermore, the modulation of the Fabry-Perot decreases
for increasing tip to sample separation.

modulation of the fringes decreases clearly for increasing tip to sample separation.
This effect is associated with planar geometry of the cavity. With increasing tip
to sample separation light that propagates obliquely to the cavity axis escapes out
of the cavity. In the near-field regime, less light is transmitted compared to when
the tip is positioned in the far-field regime. In Fig. 5.10 a we find a small increase
in intensity over the last tens of nanometers of the approach.
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5.4.3 Intuitive model for approach curves

To interpret qualitatively the coupling of light under forbidden and allowed angles,
we consider a simple model. The model is originally used to simulate fluorescence
of single molecules [105]. Here, it is used to elucidate the principle of the coupling
of near-field components of light. Figure 5.11 schematically shows the model used.
A dipole is positioned inside a dielectric medium. The dipole is oriented at an

h

n
sample

n
air

z

x

source of both,

near-fields and

far-fields

J
critical

detector

forbidden

allowed

Figure 5.11: Schematic picture of the intuitive model. Near-field and far-field compo-
nents of light are provided by a dipole located in the top dielectric. All the light that
couples to the bottom dielectric reaches the detector. In an approach experiment, the
height h of the air gap is varied.

angle, such that the emitted near-field and far-field components of light reach the
detector. An air gap of height h is defined with nair = 1. During an approach
curve h is varied. The bottom dielectric medium corresponds to the sample, i.e.,
in our experiments either opal or glass plate. The detector is defined such that all
the light coupled to the bottom dielectric is collected.

Figure 5.12 shows the simulated approach curves on a glass plate, when the
dipole emits light of λ0 =647 nm. Fig. 5.12 a depicts the intensity of transmit-
ted light integrated over all the allowed angles ϑallowed. Clearly, the Fabry-Perot
fringes are produced by the air gap cavity. The modulation depth decreases with
increasing thickness h of the air gap. As discussed earlier, the decrease in the
modulation depth is associated to the leakage of the cavity, which allows the light
to escape. Close to the glass surface, a drastic decrease in intensity is observed.
This is similar to our observation on the glass plate. Figure 5.12 b gives the trans-
mitted light in the forbidden angles larger than ϑc. Note that light can only be
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Figure 5.12: Calculated approach curves for the geometry of Fig. 5.11. a ) depicts an
approach curve when light is only detected in the allowed angles. b ) shows an approach
curve of light detected at forbidden angles.

coupled to these angles in the near-field regime (imaginary wavevectors). As a
result, it is clear that the contribution decays exponentially with increasing tip to
sample separation. Apparently, the total transmitted power in our experiments
consists of the sum of light in the allowed angle and light in the forbidden angles.
Such a sum shows the Fabry-Perot fringes as well as an increase in intensity in
the near-field regime, due to the contributions from the forbidden angles result-
ing from evanescent field components. For samples that do not exhibit diffuse
light propagation a NSOM can be designed to measure the approach curves for
forbidden and allowed angles separately [40].

We conclude that the approach curves on a glass plate (Fig. 5.10) show only the
light coupled to the glass plate at the allowed angles. Of course, light at forbidden
angles is coupled into the glass as well. However, the light is trapped in the glass
plate by total internal reflection and its contribution is not detected,because of our
detection configuration. For λ0 =647 nm, a slight increase for smaller distances is
observed that could indicate a small contribution of the evanescent fields.

For the approach curves on the opals shown in Fig. 5.9, we observed an increase
in intensity in the near-field regime compared to the transmission observed in the
far-field regime. This is an effect of the diffuse scattering of light in the opal. The
mean free path of the opal is smaller than the sample thickness, whereas for a glass
plate, the mean free path is much longer than the sample thickness. As a result,
light that is coupled into the opals under a forbidden angle reaches the detector.
Thus, much more light becomes available in the near-field regime and an increase
in intensity is observed in the approach curves.
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5.4.4 Discussion and interpretation

Based on the results gained from the intuitive model, we construct a function
suitable to fit the the approach curves. We define

f(h) = Anear · exp(
−h

tnear
) + Afar · exp(

−h

tfar
) · sin(

π(h− α)
λ

) + f(∞) , (5.2)

where the first term represents the near-field decay with a decay length tnear and
an amplitude Anear. The second term consists of a sine that produces the far-field
characteristic with the Fabry-Perot fringes. The envelope of the fringe pattern
decays with a decay rate tfar, Afar is the amplitude of the far-field term and α is
the phase of the sine. Finally, f(∞) is the far-field transmission of light through
the crystal. Since f(∞) is not normalised to the input power and the far-field
throughput of the fibre probe no direct conclusions about the far-field transmission
may be derived. For the relative comparison of the amplitudes obtained from fits
of different approach curves at different frequencies, we will normalise the values
to f(∞). Also for the determination of the absolute near-field transmission of light
through the crystal (see section 5.5), we used f(∞) for normalisation.

The fitting procedure was performed on several approach curves at different
frequencies as shown in Fig. 5.9. Figure 5.13 collects the resulting fit parameters as
a function of frequency. For most frequencies different approach curves have been
measured and fitted. Therefore, we show the average values of the parameters
obtained.

Fig. 5.13 a depicts the phase α of the sine, that fits to the Fabry-Perot fringes.
The gray regions indicate the first and second order Γ - L stopgaps. The phase
becomes negative at frequencies in or slightly above the first order stopgap. For the
other frequencies, the phase is more or less constant. It seems that the interference
pattern in the approach curves is strongly influenced by the existence of the first
order stopgap. The negative phase indicates that the phase jump that the light
incurs when it is reflected at the crystal surface reverses its sign. It is reasonable
that this property is affected by a Γ - L stopgap, since it is related to the cavity
made of the tip and the crystal, whose cavity axis is parallel to Γ - L.

The normalised near-field amplitude Anear / f(∞) depicted in Fig. 5.13 b re-
veals no clear frequency dependence. For the near-field exponential decay tnear

that is depicted in Fig 5.13 d, we find that the decay length decreases for increas-
ing frequency. It is well-known, that the decay length decreases with decreasing
wavelength (see Eq. 3.2). For the frequency slightly below the first band edge the
decay length is found to be two times longer than in for the other frequencies.

The normalised far-field amplitude Afar / f(∞) is depicted in Fig. 5.13 c. We
find in an increased normalised amplitude Afar for the frequency in the first order
stopgap. This is consistent with an increased reflectivity due to Bragg diffraction
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Figure 5.13: Fit parameters obtained by fitting of the approach curves by using Eq. 5.2.
The dashed lines act as guides to the eye. An effect of the first order stopgap is found
in the phase of the Fabry-Perot fringes. Moreover, the amplitude of the far-field term is
higher at the gap frequency. The near-field decay rate also indicates the position of the
stopgap.
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(see section 5.2). In Fig. 5.13 e, the far field decay length tfar is shown. We
observe no clear frequency dependency. A longer decay length is found at the low
frequency side of the first order stopgap.

The quantitative analysis of approach curves on polystyrene opals shows indi-
cation of the stopgap in the phase of the Fabry-Perot fringes. The decay length of
the near-field term is increased at the low frequency edge of the first order stopgap
along the Γ - L direction.

5.5 Near-field transmission

In the previous sections the relative amount of light transfer to the photonic crystal
was investigated as a function of x-, y- and z-position of the fibre probe and as a
function of frequency. Now, we determine the absolute values of transmitted light
through the crystal for different frequencies when the tip is in contact. We call this
the near-field transmission. The measured throughput of light through the crystal
needs to be normalised to the amount of light coming directly from the near-field
aperture probe. To this end the fibre probe is positioned next to the crystal by
lateral movements only. In order to prevent damage to the fragile probe, the probe
is first retracted over roughly 50µm with respect to the in-contact position. Now,
all the light coming from the probe is collected by the detector. This provides a
far-field determination of the output of our near-field probe. Subsequently, the
tip is moved back on top of the crystal. When the tip is positioned on top of the
crystal (by x-y displacements only), we go into contact by decreasing the z-distance
down to ∼ 10 nm. A small scan similar to those in section 5.3 is performed and a
near-field coupling signal is obtained. To check the stability of the in-coupling of
light to the fibre probe the direct throughput of the tip is measured again next to
the crystal.

Figure 5.14 shows the absolute throughput of the near-field transmission on
top of the spheres. The gray areas indicate the first and second order L-gaps at
ω =0.60 and ω =1.13. We see for low frequencies the highest transmission. The
reason for this rather high transmission can be found in the normalisation. The
far-field throughput of a near-field probe is much lower then when all the emitted
light in both, the forbidden and the allowed angles would be detected, as a result
of the crystal’s diffraction.

In Fig. 5.14 we see that around ω =0.78 the throughput increases again. No
clear indications of the Γ - L gaps is found in the near-field transmission. As our
probe launches more than just normal incident wavevectors into the crystals, i.e.,
also wavevectors that do not lie in the Γ - L direction, this observation confirms
the hypothesis that the present near-field experiments are mostly sensitive to other
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Figure 5.14: Near-field transfer for different frequencies. The gray areas indicate the
first and second order stopgap of the polystyrene crystal.

stopgaps, that have been rarely or not studied before.

5.6 Conclusions

We show for the first time that the coupling of light from an external source
into a three-dimensional photonic crystal depends both on position and frequency.
We have presented local investigation of the coupling mechanism of light coming
from a point-like light source to a three-dimensional photonic crystal. Our NSOM
setup allows the determination of the position-dependent transfer of light with
nanometer accuracy, which is much less than the period of the photonic crystal.
On larger sphere size crystals it is observed that more light is launched into the
photonic crystal if the probe is located directly above the spheres. The intensity
maxima shift and change their shape for different frequencies of light situated near
the second order L - gap of the artificial opal. Investigation on small sphere size
crystals show inversion of the optical pattern, i.e., more light is transmitted when
the near-field probe is positioned in between the spheres. The contrast inversion
of the optical near-field pattern is associated to first order stopgaps at the U, K
and W points.

We have imaged the light transfer through defects in the <111> surface. We
find for large frequencies that less light is coupled, whereas for small frequencies
more light is transferred. For a frequency inside the first order L-gap, less light
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is transmitted at the location of a defect. The obtained near-field measurement
show for the first time that coupling of light from an external point-like light
source into a three-dimensional photonic crystal depends on the relative launching
position with respect to the crystal lattice as well as on the optical frequency.
This position dependent transfer of the light through three-dimensional photonic
crystals has to our knowledge never been observed before.

Investigation on approach curves performed at different optical frequencies
reveal indications on the first order stopgap. At the stopgap frequency, the decay
length associated to evanescent light from the tip is two times longer than at all
other frequencies. From the interference pattern of the Fabry-Perot fringes, a shift
of the cosine at the crystal surface is determined. We observe a change in this shift
while tuning the frequency through the stopgaps indicating a reversal of the phase
change incurred by the reflection at the crystal surface. In the near-field regime
the transmitted intensity increases. Comparison to approach curves obtained on
a glass plate confirms that we also detect light that is coupled under forbidden
angles into the crystal. Thanks to the diffusion of light in the crystal, detection of
this light becomes possible. The increase in intensity due to the forbidden angles
is of the order of 10% to 20%.

Near-field transmission measurements were performed. We find that the stop-
gaps of the crystals do not significantly influence the near-field transmission. We
think that the near-field technique can not resolve the influence of the stopgap,
because the probe launches light with different wavevectors k into the crystal.
As a result, light of all frequencies can find an allowed propagation directions in
the crystal and will reach the detector. We propose that our method could be
very useful to determine whether a crystals shows a complete three-dimensional
photonic bandgap.

The obtained position- and frequency-dependent information of the light trans-
fer consists of different contributions, e.g., coupling of external light to crystal
modes, multiple scattering of light or propagation of light through air and crystal.
The measurements shown include information about the LDOS at the crystal inter-
face. As a next step, it is desirable to perform theoretical modelling to understand
the couplings mechanism and if possible, to separate the various contributions in
the measurements. New theoretical models, e.g., [77], [106] as well as FDTD sim-
ulations [107] may contribute to the understanding of the new insight about the
light transfer, which is gained from the measurements presented in this chapter.
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Summary

Photonic crystals are structures with a strong relation between geometry and op-
tical properties. The application of near-field methods is a new and challenging
approach to investigate the local optical properties of photonic crystals. The op-
tical signals obtained in crystal structures of various dimensionalities can be di-
rectly related to the local geometry of the structure. In contrast to this local probe
technique that enables sub-wavelength resolution, far-field approaches return in-
formation that is spatially averaged. Reflectivity experiments, for example, reveal
the long-range quality of a crystalline structure or the effect of stopgaps on the
overall light propagation. By combining the complementary near-field and far-field
results, a complete picture of the optical properties in a photonic crystal structure
emerges.

A theoretical introduction on photonic crystals is provided in chapter 1. For
the infinite one-dimensional case the dispersion relation is introduced. Subse-
quently, the two specific cases of a photonic crystal slab and a three-dimensional
polystyrene opal are discussed in detail. The second part of the chapter deals
with the methods used to fabricate the photonic crystal structures investigated
in this thesis. To fabricate different sub-wavelength features of any size and in a
periodic arrangement, we use a focused ion beam (FIB). High-energy heavy ions
locally sputter material away to create a nanoscale arrangement of alternating re-
fractive indices. For the fabrication of a large two-dimensional periodic structure,
a holographic method is applied to illuminate photo resist. After lift-off and etch-
ing processes a freestanding membrane containing a hexagonal arrangement of air
rods is produced. Three-dimensional photonic crystals are made by self-assembly
of polystyrene spheres. The close packed face centred cubic lattice crystals (arti-
ficial opals) show photonic stopgaps along different crystalline directions.

Different methods, both near-field and far-field, have been used to investi-
gate photonic structures. In the most frequently used methods both the light
source and the detector are in the far-field. We have used such far-field methods
to determine the stopgaps of the two-dimensional photonic crystal slab and the
three-dimensional photonic crystals. Moreover, top reflection measurements on
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the two-dimensional freestanding membrane allow so-called resonant modes to be
probed. The method is elucidated theoretically in chapter 2. Moreover, the work-
ing principle of near-field detection is explained as well as the fabrication process
of near-field probes. In this thesis, two different near-field optical instruments are
used: a photon scanning tunnelling microscope (PSTM) and a near-field scanning
optical microscope (NSOM). In the PSTM the sub-wavelength aperture fibre probe
is used as detector, whereas in the NSOM, the probe provides a point-like light
source. Both setups can be operated in a three-dimensional (3D) measurement
mode, such that retraction and approach curves can be measured. Moreover, the
PSTM enables the measurement of the optical phase simultaneously with the local
intensity of light and the topography of the structure.

In chapter 3 different one-dimensional photonic structures produced by FIB
milling are investigated with the PSTM. The optical field distribution of light
around 15 air rods and 15 slits in a waveguide ridge show a standing wave in front
of the structure. Inside the arrays themselves, the decay of the optical intensity
is measured. The losses of the array are determined from the intensity decay as
a function of position. The decay inside the array is found to be wavelength de-
pendent. A faster decay rate for shorter wavelength of light suggests that losses
arising from scattering processes produce the decay in intensity. Behind the 15
slit array an unexpected, wavelength-dependent recovery process is observed. The
underlying interference is caused by light propagating through the array and light
reflected by substrate layers underneath the waveguide. The fact that reflections
from underlying substrate layers can find their way back into photonic structures,
bypassing photonic crystal regions, may have repercussions for cross-talk in pho-
tonic crystal circuits based on, for example, silicon-on-insulator technology. On
the 15 air rod structure the phase information of light is analysed as well. In
the air rod region, we find indications of a local change in the effective refractive
index. Overall, the air rod array produces circularly shaped scattered waves that
interfere with the propagating waves. As a result, in a complex interference pat-
tern is built up, which shows a network of phase singularities and phase jumps.
These field and phase measurements show that a PSTM can reveal complex local
scattering phenomena, which remain hidden in far-field investigations. In the last
part of chapter 3 we demonstrate the importance of the three-dimensional mea-
surement mode. Thus, the evanescent fields and propagating scattered light can
be separated, as is illustrated on scattering by two slits in a waveguide ridge. The
3D measurement mode also allows evolution of phase singularities in space to be
visualized. For a waveguide that contains 4 guided modes, we observe the creation
of a pair of phase singularities as the height above the waveguide is increased.

A two-dimensional photonic crystal slab is characterised by far-field reflectivity
measurements and the results are discussed in chapter 4. Through these measure-
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ments it is possible to investigate the coupling to resonant modes (or leaky modes)
of the photonic crystal slab. The excitation of such a mode produces a sharp
feature with a dispersive line shape in the reflectivity spectrum. The origin of
the sharp features is interference between light propagating along two different
pathways: a direct reflection and reflection via the resonant mode. Through a
determination of the dispersion of the features part of the band structure, above
the light line, of the photonic slab is reconstructed. Excellent agreement with
the calculations is found. In the second part of chapter 4, the actual line shape
of the resonance features is investigated in more detail. To this end, the theory
introduced by Fano, for the description of inelastic scattering of electrons on He-
lium atoms, is translated to the photonic case to fit the data. We find that the
line width of the observed resonaces is extremely narrow, which indicates the high
quality of our large photonic crystal. The theory introduces a coupling parameter
q that describes the ratio of two transition probabilities. For TM polarised light
we observe a reversal in the sign of the coupling parameter q at certain k//. This
sign reversal signifies a phase change of light in one of the two interference path-
ways. A possible explanation is that a phase change occurs in the directly reflected
light pathway while tuning the incident angle through a Brewster-like angle. It
is remarkable that this angle is determined by an effective refractive index of the
photonic crystal slab and not by its band structure.

In chapter 5, the transfer of light coming from a point-like light source, which
couples to a three-dimensional photonic crystal and subsequently propagates
through it, is investigated by using the NSOM. For different normalised frequen-
cies we find a position dependence of the transfer. For high frequencies more
light is transmitted through the crystals when the fibre probe is positioned on
top of a sphere, whereas less light is transmitted in between the spheres. For
low normalised frequencies, the near-field transfer pattern is inverted in intensity,
thus more light is transmitted in between the spheres and less light through the
spheres. The inclusion of a defect in the <111> surface affects the local coupling of
light strongly. For low frequencies (except for a frequency in the first order L-gap)
we find a high throughput at the defect. For high frequencies and a frequency
in the first order L-gap less light enters through defects. We find that the near-
field investigations have the potential to locate defects underneath the first layer
of polystyrene spheres. Investigations on approach curves performed at different
optical frequencies indicate the effect of the first order stopgap on the near-field
coupling. At the stopgap frequency, the decay length associated to evanescent
light from the crystal is two times longer than for other frequencies. In addition, a
high modulation of Fabry-Perot fringes is found for frequencies near the stopgap.
The near-field technique reveals the complex coupling of light at the interface of a
three-dimensional photonic crystal.
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This thesis describes a rich variety of optical behaviour in photonic crystal
structures. Local visualization of light propagation allows the direct determina-
tion of losses and refractive indices and the observation of complex interference
phenomena like the formation of phase singularity networks. Both local and spa-
tially averaging techniques have been used to investigate the coupling of light to
photonic crystals. We find that coupling to resonant modes can exhibit so-called
q-reversal. The near-field coupling of light coming from a point-like light source is
found to be both position-dependent and frequency dependent. This coupling is
strongly influenced by local defects in the crystal.
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Fotonische kristallen zijn optische materialen met structuur op de schaal van
de golflengte waardoor de optische eigenschappen zeer sterk van de geometrie
afhangen. In dit proefschrift worden de lokale optische eigenschappen van een
fotonische kristal onderzocht met een nabije-veld methode. De op deze manier
verkregen optische informatie van licht binnenin de structuur wordt direct gere-
lateerd aan de geometrie. Tegenover een dergelijke lokale meettechniek, die een
resolutie oplevert kleiner dan de golflengte van licht, staan verre-veld methoden,
die de optische eigenschappen ruimtelijk middelen en dus globale informatie meten.
Metingen van gereflecteerd licht openbaren bijvoorbeeld de kwaliteit van de kristal
structuur of effecten van een verboden frequentie band (in een richting) op de
voortplanting van het licht. Door de twee technieken, de nabije- en de verre-veld
methode, gecombineerd te gebruiken, wordt het mogelijk om een compleet beeld
van het gedrag van licht in een fotonisch kristal te verkrijgen.

In hoofdstuk 1 is the theorie van fotonische kristallen beschreven. De opti-
sche dispersie relatie wordt eerst toegelicht aan de hand van een oneindig lange
een-dimensionale structuur. Vervolgens worden de specifieke gevallen van een fo-
tonische kristal plak en een drie-dimensionaal polystyreen opaal besproken. In het
tweede deel van dit hoofdstuk worden de gebuikte methodes voor het vervaardi-
gen van de kristallen toegelicht. Voor het maken van verschillende zeer kleine
periodieke structuren is een gefocusseerde ionenbundel (FIB) gebruikt. De ionen
worden met een hoge energie op het substraat geschoten, waardoor het mogelijk
is om lokaal vormpjes op een schaal van nanometers in het materiaal te boren.
Voor de fabricage van grote twee-dimensionale periodieke structuren is van een
interferometrische opstelling gebruik gemaakt om fotoresist te belichten. Na een
lift-off en een ets proces ontstaat een vrijhangende membraan met een hexagonaal
gatenpatroon. De drie-dimensionale fotonische kristallen zijn gemaakt op basis
van kleine polystyreen bolletjes, die door zelforganisatie een kristal vormen. Dit
kristal heeft verboden frequentie banden in verschillende richtingen.

Verschillende methoden, zowel nabije- als ook verre-veld technieken gebruikt,
om fotonische kristallen te bestuderen, worden beschreven in hoofdstuk 2. Meestal
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bevinden zich de lichtbron en ook de detector in het verre-veld. Wij hebben
een dergelijke methode gebruikt, om de verboden frequentie banden van de twee-
dimensionaal fotonische kristal plak en van de drie-dimensionale opaal te bepalen.
Bovendien zijn er hoekafhankelijke reflectiviteitsmetingen aan de vrijhangende
membraan uitgevoerd. Daarmee is het mogelijk aan resonante modi van het kristal
te koppelen. Dit wordt schematisch toegelicht. Verder wordt in dit hoofdstuk uit-
gelegd, hoe nabije-veld methodes werken en hoe de scherpe nabije-veld tipjes wor-
den gemaakt. Wij gebruiken twee verschillende nabije-veld methodes: een “photon
scanning tunnelling microscope (PSTM)” en een “near-field scanning optical mi-
croscope (NSOM)”. In een PSTM word het scherpe tipje gebruikt als detector
en in een NSOM wordt een dergelijke tipje gebruikt als optische puntbron. In
beide opstellingen zijn zogeheten drie-dimensionale metingen mogelijk, waarmee
retractie- en naderingscurven gemeten worden. De PSTM geeft bovendien de mo-
gelijkheid om de optische fase van het licht binnenin in een structuur te meten.
Dit wordt dan simultaan gedaan met een meting van de lokale intensiteit van het
licht en de topografie van de structuur.

In hoofdstuk 3 worden de resultaten van het onderzoek met de PSTM aan
verschillende, met FIB vervaardigde structuren besproken. In de veldverdelingen
van licht in een golfgeleider met 15 gaten of 15 spleten vinden we staande gol-
ven voor het begin van de gaten of spleten. In de periodieke structuur zelf is
een afname van de intensiteit te herkennen. Uit deze afname kan het verlies van
licht worden berekend. Wij stellen vast, dat de afname van intensiteit (en dus de
hoeveelheid verloren licht) golflengte afhankelijk is. Aangezien het verlies groter
wordt voor kortere golflengten lijkt het erop dat het verlies wordt veroorzaakt door
verstrooiing. Achter de 15 spleten vinden we een onverwacht golflengte afhanke-
lijk verschijnsel bij de opbouw van de golfgeleider mode. Het is een interferentie
die wordt opgebouwd uit licht, dat zich direct door de periodieke structuur heeft
voortgeplant en licht, dat aan het onderliggend substraat word weerkaatst. Het
feit dat er licht om de structuur heen komt zonder deze te voelen is een belangrijke
ontdekking omdat het laat zien dat er eventueel overspraak kan ontstaan in opti-
sche circuits op basis van fotonische kristallen die gemaakt zijn met een silicium-
op-isolator technologie. Aan de structuur met 15 gaten bekijken we de fase van
het licht. De lokale verandering van de effectieve brekingsindex van het materi-
aal wordt zichtbaar in de metingen. De gaten verstrooien het licht in bolgolven,
welke interfereren met het inkomende licht. Het resultaat ervan is een ingewikkeld
netwerk van fasesingulariteiten en fasesprongen. De met de PSTM gemeten lokale
optische veldverdelingen en de faseevolutie laten optische verschijnselen zien die
met verre-veld methodes onmogelijk te zien zijn. In het laatste deel van hoofdstuk
3 wordt gedemonstreerd, hoe belangrijk de drie-dimensionale meetmethode is. Met
behulp van retractie- en naderingscurven kan evanescent licht van verstrooid licht
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worden onderscheiden. Dit wordt aan de hand van verstrooiing aan twee spleten
in een golfgeleider duidelijk gemaakt. Bovendien wordt de vorm van een fasesin-
gulariteit voor verschillende tip-substraat afstanden bekeken. Wanneer 4 modi
in de golfgeleider aangeslagen worden, kan de creatie van een paar tegengestelde
fasesingulariteiten worden gevisualiseerd.

In hoofdstuk 4 is een twee-dimensionaal fotonisch kristal plak met behulp van
verre-veld methodes onderzocht. Met de methode is het mogelijk om zogeheten
resonante modi van de structuur aan te slaan. Als gevolg is er in het spectrum
van het gereflecteerde licht een scherp piekje te zien. De vorm van de piek wordt
bepaald door interferentie van licht dat zich langs twee verschillende kanalen voort-
plant: directe weerkaatsing aan de fotonische kristal plak en weerkaatsing via een
resonante mode. De bepaling van de optische frequentie van de resonantie wordt
gebruikt om een deel van de dispersie relatie van de fotonische kristal plak te re-
construeren. De resultaten komen goed overeen met modelberekeningen. In het
tweede deel van hoofdstuk 4 wordt de vorm van de resonanties beter bekeken.
Daarvoor hebben we een theorie gebruikt, die oorspronkelijk voor de beschrijving
van verstrooiingsexperimenten van elektronen aan een Helium atoom is ontwik-
keld. De lijnbreedte van de pieken blijkt zeer smal te zijn, wat duidt op een hoge
kwaliteit van onze grote fotonische kristallen. De theorie maakt ook gebruik van
een koppelingparameter q, die is gedefiniëerd als de verhouding tussen twee over-
gangswaarschijnlijkheden. Voor TM gepolariseerd licht wordt een omslag van het
teken van de koppelingparameter q gevonden. Deze omslag van het teken betekent
dat er een verandering is opgetreden in de fase van het licht in een van de twee
interferentie kanalen. Een mogelijke verklaring kan zijn dat er een Brewster hoek
bestaat voor de fotonische kristal plak. Als de hoek van het inkomende licht wordt
verdraaid door de Brewster hoek heen, dan zal het teken in de directe weerkaatste
lichtbundel omslaan. Het feit dat er een Brewster hoek zou kunnen bestaan voor
een fotonisch kristal plak is een interessante ontdekking.

In hoofdstuk 5 onderzoeken we licht dat uit een optische puntbron komt, in een
drie-dimensionaal fotonisch kristal wordt ingekoppeld en daar vervolgens doorheen
beweegt om tenslotte aan de ander kant van het kristal weer te worden uitgekop-
peld. Om de overdracht van dit licht te meten gebruiken we de NSOM. Voor
verschillende frequenties wordt er een ruimtelijke afhankelijkheid van deze over-
dracht gevonden. Zo is voor hoge frequenties de overdracht groter, als het tipje
boven een bolletje staat dan als het tipje zich tussen de bolletjes bevindt. An-
dersom komt voor lage frequenties meer licht door het kristal als de tip tussen de
bolletjes is dan wanneer ze er bovenop staat. Als er zich een defect in het <111>
oppervlak bevindt, dan wordt de lokale inkoppeling van het licht sterk bëınvloed.
Het onderzoek laat zien, dat voor lage frequenties (behalve voor een frequentie
in het verboden band) meer licht in het kristal kan worden gekoppeld. Voor hoge
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frequenties, en ook voor de frequenties in het verboden band, wordt er minder licht
ingekoppeld. De nabije-veld methode laat zien, dat zelfs defecten die in een paar
lagen onder het oppervlak zitten nog een invloed op de koppeling hebben.Verder
zijn er retractie- en naderingscurven voor verschillende frequenties gemeten. Ook
daar zijn indicaties voor het effect van de eerste orde verboden frequentie band
op de lichtkoppeling te vinden. Zo is voor een frequentie in het verboden band
de afval van het nabije-veld twee keer langer dan voor andere frequenties. Boven-
dien laten Fabry-Perot oscillaties een grotere modulatie zien voor frequenties rond
het verboden band; er wordt dus meer licht weerkaatst. De NSOM geeft nieuwe
informatie over hoe het licht van een puntbron aan een drie-dimensionaal kristal
koppelt.

In dit proefschrift zijn verschillende mogelijkheden beschreven om de opti-
sche eigenschappen van een fotonisch kristal te onderzoeken. Het locale meten
van lichtvelden en de optische fase maken het mogelijk om verliezen en de effec-
tieve brekingsindex van het materiaal te bepalen. Bovendien zijn er interferentie
fenomenen zoals fase- singulariteiten en -sprongen onderzocht. Beide technieken,
de locale nabije-veld methode en de ruimtelijk middelende verre-veld methode,
zijn gebruikt om koppeling van licht met een fotonisch kristal te onderzoeken. Wij
ontdekken, dat de koppeling naar resonante modi met een teken omslag van de
koppelingparameter q kan worden verklaard met een soort Brewster hoek. Verder
vinden we, dat de koppeling van licht uit een puntbron naar een drie-dimensionaal
kristal niet alleen ruimtelijke afhankelijkheid heeft, maar ook van de optische fre-
quentie afhangt. Deze koppeling wordt sterk bëınvloed als er een lokaal defect in
het kristal is.
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Zusammenfassung

Photonische Kristalle sind eine neue Sorte von Materialien, deren Brechungsin-
dex mindestens entlang einer Richtung periodisch variiert (Gitter). Die optischen
Eigenschaften von Licht (elektromagnetische Wellen) mit einer Wellenlänge von der
Grössenordnung der Gitterkonstante sind somit direkt abhängig von der Kristallge-
ometrie. Die Periodizität des Brechungsindexes verursacht eine so genannte Band-
struktur mit verbotenen Frequenzbändern, in einer oder mehreren Richtungen,
für welche das Licht perfekt reflektiert wird. Die Erforschung lokaler optischer
Eigenschaften wird durch Nahfeldmethoden ermöglicht, welche das sich im Kristall
befindende Licht messen können. Mit dieser Methode kann der direkte Einfluss der
Kristallgeometrie auf die Ausbreitung des Lichtes gemessen werden. Im Gegensatz
zu solch lokalen Messtechniken liefern Fernfeldmethoden ein räumlich gemitteltes
optisches Signal. Zum Beispiel können die Qualität des Kristalls sowie Effekte von
verbotenen Frequenzbändern mit Reflektionsmessungen bestimmt werden. Die mit
den zwei komplementären Messtechniken errungenen Erkenntnisse, Nahfeld- und
Fernfeldmethode, liefern ein Gesamtbild der optischen Eigenschaften der photoni-
schen Kristalle.

In Kapitel 1 wird eine Einführung in die Theorie der photonischen Kristalle
gegeben. Anhand des einfachen Beispiels eines unendlich ausgedehnten, eindimen-
sionalen photonischen Kristalls wird die Bandstruktur erklärt, welche die optischen
Eigenschaften des Lichtes im Material beschreibt. Danach werden zwei spezielle
Strukturen, eine freihängende zweidimensionale photonische Kristallmembran und
ein dreidimensionaler Kristall, aufgebaut aus Latexkugeln, erläutert. Im zweiten
Teil des Kapitels werden die Methoden diskutiert, womit die Kristalle, die in dieser
Arbeit untersucht worden sind, hergestellt wurden. Für die Fabrikation von ver-
schiedenen Strukturen von jeglicher Grösse (im Nanometerbereich) und Form und
in gewünschter periodischer Anordnung, wird ein fokussierter Ionenstrahl (FIB)
genutzt. Die hochenergetischen Ionen prallen auf die Oberfläche und schiessen Ma-
terial weg. Somit kann eine Struktur bestehend aus einer periodischen Anordnung
von zwei verschiedenen Materialien (z.B. Luft und Glas) hergestellt werden. Zur
Herstellung von grossflächigen und vor allem zweidimensionalen Kristallen werden
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meistens holographische Methoden genutzt. Mit diesen wird der Photoresist be-
lichtet und mit weiteren Verarbeitungsvorgängen kann eine freihängende Membran
mit periodisch angeordneten Löchern hergestellt werden. Die dreidimensionalen
Kristalle bestehen aus Latexkugeln, die selber einen Kristall formen. Die Kristalle
weisen ein dicht gepacktes Gitter (flächenzentriert kubisch) auf und zeigen ver-
botene Frequenzbänder in verschiedenen Kristallrichtungen.

Photonische Kristalle können mit verschiedenen Methoden, Nahfeld- und Fern-
feldmethoden, untersucht werden. Meistens befinden sich beide, Detektor und
Lichtquelle, im fernen Feld. Wir haben solche Fernfeldmethoden genutzt um
die verbotenen Frequenzbänder sowohl in der zweidimensionalen photonischen
Kristallmembran als auch im dreidimensionalen Kristall zu vermessen. Ausserdem
wurde eine vom Einfallswinkel des Lichtes abhängige Reflektionsmethode genutzt,
um Licht an so genannte resonante Kristallmoden der photonischen Kristallmem-
bran zu koppeln. Desweiteren werden in dieser Dissertationsarbeit zwei verschieden
Nahfeldmethoden angewandt: ein “photon scanning tunnelling microscope (PSTM)”
und ein “near-field scanning optical microscope (NSOM)”. In der ersten Methode
wird eine zugespitzte Glasfaser als Detektor genutzt, in der zweiten Methode dient
sie als punktförmige Lichtquelle. Die Herstellung der nahfeld Glasfasern (Spitzen)
wird beschrieben. Danach werden die zwei Nahfeldmethoden im Detail erklärt. In
beiden Messaufstellungen ist ein dreidimensionaler Messmodus eingebaut, so dass
Näherungs- und Zurückziehkurven gemessen werden können. Als Besonderheit ist
es mit unserem PSTM möglich, die Phase des Lichtes in einem Material zu messen.
Somit werden zugleich drei Signale detektiert: die Intensität und die Phase des
Lichtes in der Struktur sowie die Topographie der Struktur.

In Kapitel 3 werden verschieden mit FIB hergestellte eindimensionale photoni-
sche Strukturen mit dem PSTM untersucht. Das optische Feld von Licht rund um
15 Löcher und 15 Schlitze in einem Wellenleiter wird gezeigt. Wir finden eine ste-
hende Welle im Wellenleiter vor der periodischen Struktur, die durch Interferenz
zwischen einkommendem und reflektiertem Licht aufgebaut wird. In der Struktur
selber nimmt die Intensität ab. Der Verlust des Lichtes durch die Struktur kann
positionsabhängig bestimmt werden. Der Abfall der Intensität in der Struktur
zeigt eine Wellenlängenabhängigkeit. Wir finden, dass die Intensität schneller ab-
nimmt für kürzere Wellenlängen als für längere. Diese Verhalten lässt vermuten,
dass die Verluste durch Beugung erzeugt werden. Hinter den 15 Schlitzen wird
ein unerwarteter wellenlängenabhängiger Wiederaufbau der Intensität im Wellen-
leiter beobachtet. Auch hier ist Interferenz verantwortlich für dieses aperiodische
Intensitätsmuster des Lichtes. Die Interferenz entsteht zwischen Licht, welches sich
durch die periodische Struktur hindurch ausbreitet und Licht, welches am unter-
liegenden Substrat reflektiert wird. Die Tatsache, dass Licht am Substrat reflek-
tiert wird und somit den photonischen Kristall umgeht, ist eine wichtige Erkennt-

130



Zusammenfassung

nis für die Silizium-auf-Isolator Technologie, da photonische Kristalle basierend
auf dieser Technologie Überspracheffekte aufweisen könnten. Als nächster Schritt
wurde die Phase des Lichtes rund um 15 Löcher in einem Wellenleiter gemessen. Im
Bereich der Löcher verändert die lokale Phase wegen der Änderung des Brechungsin-
dexes (Luft anstelle Glas). Allgemein sieht man, dass die Löcher das Licht in
Kugelwellen zurückstreuen. Diese Kugelwellen interferieren mit dem einkommen-
den Licht, wodurch ein komplexes Phasenmuster mit Singularitäten und Sprüngen
hervorgerufen wird. Anhand der gemessenen komplexen Intensitäts- und Phasen-
muster wird die Wichtigkeit der Nahfeldmethoden (PSTM) deutlich, denn für
Fernfeldmethoden bleiben diese Informationen des Lichtes verborgen. Im letzten
Abschnitt von Kapitel 3 wird die dreidimensionale Messmöglichkeit demonstriert.
Am Beispiel von Lichtbeugung an zwei Schlitzen werden abfallende (evanescente)
und laufende Wellenanteile voneinander getrennt. Die dreidimensionale Messtech-
nik ermöglicht es, die Entstehung von Phasensingularitäten zu beobachten. Für
einen Wellenleiter der 4 Moden leitet, bilden wir die Entstehung von zwei gekop-
pelten Singularitäten für zunehmenden Spitze zu Substrat Abstand ab.

In Kapitel 4 wird eine freihängende photonische Kristallmembran mit Fern-
feldmethoden untersucht. Die Messmethode ermöglicht die Kopplung von einfal-
lendem Licht an resonante Moden der Membran. Wird ein solcher Mode angeschla-
gen, ist ein schmales Kennzeichen im Reflexionsspektrum zu erkennen. Ein solches
Kennzeichen wird durch Interferenz zwischen Licht, welches verschieden optische
Wege zurücklegt, hervorgerufen. Die zwei verschiedenen optischen Wege sind die
direkte Reflektion des Lichtes an der Membran und Reflektion von Licht, welches
für kurze Zeit an einen resonanten Mode koppelt. Aus der Frequenzposition des
Kennzeichens kann ein Teil der Bandstruktur der photonischen Kristallmembran
rekonstruiert werden. Wir finden eine ausgezeichnete Übereinstimmung der Mess-
resultate mit Simulationen. In der zweiten Hälfte von Kapitel 4 wird die Form
des Kennzeichens genauer untersucht. Dafür wenden wir eine Theorie an, welche
ursprünglich für inelastische Streuung von Elektronen an einem Heliumatom ent-
wickelt wurde. Wir haben diese Theorie für Photonen (Licht) umgeschrieben
und können damit die Messdaten beschreiben. Wir finden, dass die Kennzei-
chen sehr schmal sind, was auf eine hohe Qualität der Struktur zurückschliessen
lässt. Zusätzlich führt die Theorie einen Kopplungsparameter q ein, welcher als
das Verhältnis zweier Übergangswahrscheinlichkeiten definiert ist. Für parallel
(TM) polarisiertes Licht beobachten wir eine Umkehrung des Vorzeichens von q.
Die Umkehrung bedeutet, dass sich die Phase in einem der zwei optischen Wege
ändert. Eine mögliche Erklärung wäre eine Phasenänderung von Licht im di-
rekt reflektierten optischen Weg. Wenn der Einfallswinkel von Licht durch den
sogenannten Brewster-Winkel gedreht wird, ändert sich die Phase von TM pola-
risiertem Licht. Bemerkenswert ist, dass unsere mögliche Erklärung die Annahme
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eines effektiven Brechungsindexes und eines Brewster-Winkels für eine photonische
Kristallmembran macht.

In Kapitel 5 untersuchen wir die Übertragung von Licht aus einer punktför-
migen Lichtquelle, welches in einen dreidimensionalen Kristall eingekoppelt wird,
sich darin fortpflanzt und schliesslich auf einen Detektor im Fernfeld fällt. Diese
Übertragung ist mit dem NSOM für verschiedene Wellenlängen (optische Fre-
quenzen) gemessen worden. Für hohe Frequenzen wird das Licht besser in den
Kristall gekoppelt, wenn die NSOM Spitze sich über einer Kugel befindet. Für
tiefe Frequenzen beobachten wir das Umgekehrte, mehr Licht kommt durch den
Kristall wenn die Spitze zwischen den Kugeln ist. Wenn sich ein Defekt in der
Kristalloberfläche befindet, wird die lokale Kopplung vom Licht stark beeinträchtigt.
Für tiefe Frequenzen (ausgenommen Frequenzen im verbotenen Frequenzband)
wird mehr Licht durch den Defekt in den Kristall gekoppelt, für hohe Frequenzen
und für Frequenzen im verbotenen Frequenzband wird wenig Licht an der Stelle
des Defekts in den Kristall gekoppelt. Ausserdem beobachten wir, dass es möglich
ist mit einem NSOM Defekte, welche sich einige Lagen unter der Kristalloberfläche
befinden, aufzuspüren. Untersuchungen der Nahfeldkopplung in Näherungs- und
Zurückziehkurven weisen auf verbotene Frequenzbänder hin. Für Frequenzen im
verbotenen Frequenzband finden wir einen zweimal längeren exponentiellen Abfall
des Lichtes gegenüber dem Abfall von Licht mit andere Frequenzen. Ausserdem
zeigen die Kurven eine grössere Amplitudenmodulation für Frequenzen rund um
das verbotene Frequenzband. Die Nahfeldmethode erlauben Untersuchungen des
komplexen Kopplungsmechanismus von Licht zu einem dreidimensionalen photo-
nischen Kristall.

In dieser Dissertationsarbeit beschreiben wir verschiedene optische Eigenschaf-
ten von photonischen Kristallstrukturen. Durch Beobachtungen der lokalen Fort-
pflanzung des Lichtes können Verluste in Intensität und Brechungsindex des Mate-
rials bestimmt werden. Messungen der Phase des Lichtes enthüllen ein komplexes
Netzwerk von Interferenzen, wodurch unter anderem Phasensingularitäten entste-
hen. Beide Methoden, Nahfeld und Fernfeld, wurden genutzt zur Untersuchung der
Kopplung des Lichtes in einen photonischen Kristall. Resonante Moden, welche in
zweidimensionalen Kristallen angeschlagen werden können, zeigen eine sogenannte
q-Umkehrung des Kopplungsparameters q. Die Nahfeldkopplung von Licht aus
einer punktförmigen Lichtquelle ist orts- und frequenzabhängig. Diese Kopplung
kann durch Kristalldefekte stark beeinflusst werden.
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